• Title/Summary/Keyword: glutathione production

Search Result 444, Processing Time 0.031 seconds

Production of Glutathione by Candida sp. Mutant (Candida sp. 변이주에 의한 Glutathione 생산)

  • 김대선;유재홍;신원철;윤성식
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.5
    • /
    • pp.435-439
    • /
    • 1993
  • For the overproduction of glutathione, Candida sp. mutant was isolated by the treatment with U.V. light. The highest glutathione production of Candida sp. mutant was obtained after shaking culture for 48 hours in the cullture medium containing glucose 1.5%(w/v), yeast extract 4.0% (w/v), KH2PO4 0.04%(w/v), biotin 5 ng/ml, and L-cysteine 0.04%(w/v). The optimal pH and temperature for the glutathione production were pH 6.0 and 25C, respectively.

  • PDF

In-vitro Production of Glutathione Using Yeast ATP Regeneration System and Recombinant Synthetic Enzymes from Escherichia coli. (효모의 ATP 재생산계와 대장균 유래의 재조합 생산효소를 이용한 in vitro 글루타치온 생산)

  • 고성영;구윤모
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.213-220
    • /
    • 1998
  • An ATP regeneration system was used for the production of glutathione which was synthesized by a sequential action of ${\gamma}$-glutamyl-cysteine synthetase and glutathione synthetase. The synthetases above were produced in the recombinant E. coli (TG1/pDG7) with the highest specific production yield of 31 mg glutathione/g wet cell. Bakers yeast was considered to have economically a better ATP regeneration system although the glutathione production yield was lower than that of acetate kinase. It was also observed that the ATP regeneration system of bakers yeast was superior to that of Saccharomyces cerevisiae ATCC24858. The yield of glutathione production with bakers yeast was 36% with the ATP concentration of 5 mM. To avoid the cysteine limitation during the early phase of glutatione production, an extra cysteine was added at 2 hours after reaction and the production yield increased 1.91 times. The effectiveness of bakers yeast as an ATP regeneration system was proved by several sets of extra feeding experiments. The product inhibition by glutathione above 14 mM was also observed.

  • PDF

Isolation, Identification and Culture Condition of Microorganism Producing Glutathione (Glutathione 생산균주의 분리 동정 및 생산조건)

  • 신원철;김대선;유주현;유재홍
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 1993
  • The strain which produced glutathione was isolated from soil samples. The isolated strain was identified as the genus Candida through its morphological. cultural and physiological characteristics. The highest production of glutathione by Candida sp. was obtained after cultivation with shaking for 36 hours in the culture medium containing fructose 1.0%, yeast extract 4.0%. NaCI 0.04%, thiamine-HCI $5{\mu}g$/ml, and L-cysteine 0.04%. The optimal pH and temperature for the glutathione production were pH 6.0 and $25^{\circ}C$, respectively. The glutathione production by Candida sp. under the optimal culture condition was $92{\mu}g/ml$.

  • PDF

Amplification of Glutathione Production in E. coli Cells Using Recombinant DNA Techniques

  • Nam, Yong-Suk;Park, Young-In;Lee, Se-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.157-162
    • /
    • 1991
  • Conditions for glutathione production in E. coli cells which possess pGH501 (2 gshI+gshII) were studied. In terms of ATP supply for the glutathione synthesis, two different systems have been constructed and compared. When the acetate kinase reaction of E. coli was used for ATP generation, 20 mM of L-cysteine was completely converted to glutathione by toluene-treated E. coli cells (100 mg/ml) harboring pGH501 within 2 h at $37^{\circ}C$. However, considering the economical aspects, the glycolytic pathway of yeast was chosen as a better system for ATP generation. The optimal concentrations of reactants for glutathione production were determined to be as follows; 80 mM L-glutamate, 20 mM L-cysteine, 20 mM glycine, 20 mM $MgCl_2$, 50 mM potassium phosphate buffer (pH 7.5), 400 mM glucose, polyoxyethylene stearylamine ($5\;\mul/ml$), toluene-treated E. coli HB101/pGH501 (100 mg/ml), and dried yeast cells (400 mg/ml). The conversion ratio of L-cysteine to glutathione was 80% (about 5 mg/ml) under optimal condition within 6 h at $37^{\circ}C$.

  • PDF

Optimal Fermentation Conditions for Enhanced Glutathione Production by Saccharomyces cerevisiae FF-8

  • Cha, Jae-Young;Park, Jin-Chul;Jeon, Beong-Sam;Lee, Young-Choon;Cho, Young-Su
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.51-55
    • /
    • 2004
  • The influence of feedstock amino acids, salt, carbon and nitrogen sources on glutathione production by Saccharomyces cerevisiae FF -8 was investigated. Glucose, yeast extract, KH$_2$PO$_4$, and L-cysteine were found to be suitable feedstock. Highest glutathione production was obtained after cultivation with shaking for 72 h in a medium containing glucose 3.0% (w/v), yeast extract 3.0%, KH$_2$PO$_4$ 0.06% and L-cysteine 0.06%. The glutathione concentration achieved using this medium increased 2.27-fold to 204 mg/l compared to YM basal medium.

Production of Glutathione by the Yeast Mutant Saccharomyces cerevisiae Sa59 (효모변이주 Saccharomyces cerevisiae Sa59에 의한 glutathione 생성)

  • Jang, Hye-Yoon;Oh, Chul-Hwan;Oh, Nam-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.801-804
    • /
    • 2013
  • The glutathione contents of the selected mutants were investigated and found to be 6.1-15.8 mg/g-DCW. The glutathione content positively correlated with the antioxidant activity of the mutant strains ($R^2$=0.488). Furthermore, the glutathione content of the mutant S. cerevisiae Sa-59 was approximately 38% greater than that of the wild type strain and, therefore, this mutant strain was selected for glutathione production. The volumetric glutathione content in a shaking culture was increased by about 70% compared to the static culture. In addition, the specific glutathione content was increased by ~19%. The volumetric glutathione content and specific glutathione content were increased by approximately 16% and 66%, respectively, when 0.04% glutamate, 0.04% cysteine and 0.04% glycine were added. Furthermore, the highest antioxidant activity was 0.52 as absorbance unit at 700 nm.

Construction Various Recombiant Plasmids for the Enhancement of Glutathione Production in E. coli. (E. coli에서 글루타치온 생산 증가를 위한 재조합 플라스미드의 구성)

  • 남용석;이세영
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.253-261
    • /
    • 1997
  • In order to enhance glutathione production, various recombinant plasmids containing gshI and/or gshII genes isolated from E. coli K-12 were constructed and introduced into E. coli. Some plasmids contained one to three copies of gshI genes in pBR325 and others contained both gshI and genes for glutathione biosynthesis. $\gamma$-Glutamylcysteine synthetase activities of E, coli strains amplified tandem repeated gshI genes were dependent on the number of inserted gshI genes. The glutathione productivity of E. coli strains harboring various plasmids was investigated using an E. coli acetate kinase reaction as an ATP regenerating system. The glutathione productivity of E. coli strains harboring tandem repeated gshI genes was increased in proportion to the number of inserted gshI genes. By the introduction of gshII gene, the glutathione productivity of the E. coli was increased by two-fold compared with E. coli strain amplified gshI gene only. The enzymatic production of glytathione in E. coli was mainly affected by the increase of $\gamma$-glutamylcysteine synthetase activity. The highest glutathione productivity was obtained in E. coli strains harboring pGH-501 plasmid containing two copies of gshI and copy of gshII genes in pUC8 vector.

  • PDF

Increased antioxidant enzyme activities and scavenging effects of oxygen free radicals by Cheongahwan (청아환(靑娥丸)에 의한 활성(活性) 산소류(酸素類)의 소거(消去) 작용(作用)과 항산화(抗酸化) 효소계(酵素系)의 활성(活性) 증가(增加) 효과(效果)에 대(對)한 연구(硏究))

  • Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.355-365
    • /
    • 1997
  • This study was undertaken to examine the effect of Cheongahwan(CAH), being known to reinforce Kidney-yang, on the activities of endogenous antioxidant enzymes and the production of oxygen free radicals in the kidney tissues. Alterations in enzyme activities were observed after in vivo treatment in rats. CAH caused a significant increase in the activities of superoxide dismutase (SOD), glutathione peroxidase and glutathione S-transferase. But catalase activity was not significantly altered by CAH. Treatment in vitro of CAH decreased the production of oxygen free radicals in a dose-dependent fashion. These results suggest that CAH stimulate the activities of antioxidant enzymes and inhibit directly the production of oxygen free radicals. These effects of CAH may contribute to prevent the oxygen free radical-induced impairment of cell function.

  • PDF

Isolation and Identification of the High-Glutathione Producing Saccharomyces cerevisiae FF-8 from Korean Traditional Rice Wine and Optimal Producing Conditions (전통 발효주로부터 glutathione 고함유 효모 Saccharomyces cerevisiae FF-8의 분리.동정 및 최적 생산조건)

  • Park, Jin-Chul;Ok, Min;Cha, Jae-Young;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.348-352
    • /
    • 2003
  • In this study, strain of high-producing intracellular glutathione was isolated from Korean traditional rice wine. The isolated strain was identified as Saccharomyces cerevisiae based on the morphological, physiological and biochemical characteristics, and was designated as FF-8. The optimal condition for glutathione production by Saccharomyces cerevisiae FF-8 was obtained after cultivation with shaking for 72 hours in the YM medium. The optimal temperature, shaking rate and initial pH for the glutathione production were $30^{\circ}C$, 100 rpm and pH 6.0, respectively. The dry cell weight and glutathione concentration produced by Saccharomyces cerevisiae FF-8 were 5.2 g/l and 72.0 mg/l, respectively, under the optimal culture condition.

MOLECULAR BREEDING OF GLUTATHIONE PRODUCING BACTERIAL STRAINS

  • Nam Yong-Suk;Lee Se Yong
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.237-242
    • /
    • 1991
  • In order to increase the production of glutathione by maximizing the expression of recombinant gsh plasmids, two genes responsible for the biosynthesis of glutathione were cloned. A gshI gene was cloned onto pBR322 plasmid as 3.6Kb PstI DNA fragment from E. coli K-12 chromosomal DNA. Also gshII gene was cloned onto pUC13 plasmid as 2.2Kb PstI-BamHI DNA fragment. In order to improve the glutathione producing activity more efficiently, various recombinant plasmids containing tandem repeated gshI genes or both genes in various copy number onto the same vector were constructed. E. coli cells harboring pGH501 plasmid (pUC8-gshI$\cdot$I$\cdot$II) showed the highest glutathione synthesizing activity. The conditions for glutathione production with an ATP-generating system such as acetate kinase reaction of E. coli cells or glycolytic pathway of yeast cells were examined using the E. coli cells harboring the pGH501 plasmid. When the acetate kinase reaction of E. coli cells was used as an ATP generating system, 20mM of L-csteine was converted into glutathione with a yield of $100\%$.

  • PDF