• Title/Summary/Keyword: glutathione S-transferase polymorphisms

Search Result 53, Processing Time 0.02 seconds

Deletion of GSTM1 and T1 Genes as a Risk Factor for Development of Acute Leukemia

  • Dunna, Nageswara Rao;Vure, Sugunakar;Sailaja, K.;Surekha, D.;Raghunadharao, D.;Rajappa, Senthil;Vishnupriya, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2221-2224
    • /
    • 2013
  • The glutathione S-transferases (GSTs) are a family of enzymes involved in the detoxification of a wide range of chemicals, including important environmental carcinogens, as well as chemotherapeutic agents. In the present study 294 acute leukemia cases, comprising 152 of acute lymphocytic leukemia (ALL) and 142 of acute myeloid leukemia, and 251 control samples were analyzed for GSTM1 and GSTT1 polymorphisms through multiplex PCR methods. Significantly increased frequencies of GSTM1 null genotype (M0), GSTT1 null genotype (T0) and GST double null genotype (T0M0) were observed in the both ALL and AML cases as compared to controls. When data were analyzed with respect to clinical variables, increased mean levels of WBC, Blast %, LDH and significant reduction in DFS were observed in both ALL and AML cases with T0 genotype. In conclusion, absence of both GST M & GST T might confer increased risk of developing ALL or AML. The absence of GST enzyme might lead to oxidative stress and subsequent DNA damage resulting in genomic instability, a hallmark of acute leukemia. The GST enzyme deficiency might also exert impact on clinical prognosis leading to poorer DFS. Hence GST genotyping can be made mandatory in management of acute leukemia so that more aggressive therapy such as allogenic stem cell transplantation may be planned in the case of patients with a null genotype.

Association of Genetic Polymorphism of Glutathione S-transferase M1, T1 and N-acetyltransferase 1 with Lung Cancer (폐암발생과 Glutathione S-transferase M1, T1 및 N-acetyltransferase 1의 유전적 다형성과의 연관성에 관한 연구)

  • Lee, Seung-Joon;Park, Gye-Young;Oh, Yeon-Mok;Kang, Dae-Hee;Cho, Soo-Hun;Kim, Soo-Ung;Yoo, Chul-Gyu;Lee, Chun-Taeck;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.4
    • /
    • pp.471-477
    • /
    • 1999
  • Background : Smoking and high-risk occupation have been known to be the risk factors of lung cancer. The carcinogen-metabolizing enzymes in human body such as glutathione S-transferase M1, T1 and N-acetyltransferase 1 have also been regarded as risk factors in many cancers, because the activities of those enzymes play a role in metabolizing the carcinogen. A case-control study was conducted to evaluate the genetic polymorphism of GSTM1, T1 and NAT1 in lung carcinogenesis in Korean men. Methods : The histologically proven lung cancer cases were recruited from Seoul National University Hospital. The patients of more than 40-year-old with the nonmalignant urinary tract diseases were recruited as controls from the same hospitals. The informations of demographical characteristics and smoking were obtained by interview or chart review and the genetic polymorphisms of GSTM1, T1 and NAT1 were determined by PCR-based assay. The statistical analyses were performed by linear logistic regression. Results : The number of case-control was 118 and 150, respectively. The smoking history was significantly higher in the lung cancer patients than the controls. The prevalence of GSTM1 null-type was statistically higher(OR=2.25 ; 95% CI=1.12-4.51) in squamous cell carcinoma than other genotypes, but other histologic types were not The prevalence of GSTT1 null-type were not statistically higher than other genotypes in all histologic types. The fast acetylator of NAT1 was more prevalent than normal(OR=2.13 ; 95% CI=1.04-4.40) in all lung cancer patients. Conclusion : The null-type of GSTM1 and fast acetylator of NAT1 are associated with development of lung cancer in Korean men.

  • PDF

Urinary 1-hydroxypyrene glucuronide and genetic polymorphisms of xenobiotic metabolism enzymes in shipbuilding workers using coal tar paint (콜타르가 함유된 페인트 사용 조선업 근로자에서 요중 1-hydroxypyrene glucuronide와 대사효소 유전자 다형성에 관한 연구)

  • 이경호;이정미;최인미;김재용;임형준;이상윤;윤기정;고상백;최홍렬
    • Environmental Mutagens and Carcinogens
    • /
    • v.20 no.1
    • /
    • pp.34-39
    • /
    • 2000
  • Although shipbuilding workers were exposed to a variety of genotoxic compounds including polycyclic aromatic hydrocarbons (PAHs), limited number of studies were conducted to evaluate the biomarkers related to PAH exposure in painting workers in shipbuilding industry. One hundred and thirty three workers including 73 employees using coal tar paints were recruited from a shipbuilding company located in South Korea. Urinary 1-hydroxypyrene glucuronide (1-OHPG), as internal dose of PAH exposure, were measured by synchronous fluorescence spectroscopy after immunoaffinity purification using monoclonal antibody 8E11. Glutathione S-transferase (GST)M1 and GSTT1 genotypes were assessed by multiplex PCR. Information on demographic characteristics, smoking gabit, diet, job title, use of personal protective equipments were collected by self-administered questionnaire. Urinary 1-OHPG were higher in workers using coal tar paints than in workers using general paints, however, the difference was not statistically significant (p=0.20, Mann-Whitney U test). Urinary 1-OHPG levels in smokers were higher than in non-smokers (p<0.05 by Mann-Whitney U test) and there was a significant increase in urinary 1-OHPG levels with the numbers of cigarettes consumed per day (Spearman's correlation coefficient = 0.28, p=0.02). Genetic polymorphisms of GSTM1 and GSTT1 did not influence the level of 1-OHPG in study subjects. Multiple regression analysis show that smoking is the only significant predictor for lon-transformed 1-OHPG (overall model R2=0.1). These results suggest that workers using coal tar paints were exposed to significant amount of PAHs and individual difference in xenobiotic metabolism might affect the levels of internal dose of PAHs.

Cytochrome P4501A1 and Glutathione S-transferase M1 Polymorphism and Individual Genetic Susceptibility to the Korean head and neck Cancer patients (한국인 두경부암 환자에서 CYP1A1 및 GSTM1 유전자 다형성 분석에 의한 유전적 감수성에 대한 연구)

  • 김현준;채현기;태경;공구
    • Environmental Mutagens and Carcinogens
    • /
    • v.20 no.1
    • /
    • pp.26-33
    • /
    • 2000
  • Genetic polymorphisms of metabolizing enzymes to chemical carcinogens have been recognized as a major important host factors in human cancers. To datermine the frequencies of genotypes of CYP1A1 and GSTM1 metabolizing enzymes in healthy controls and head and neck cancer patients in Korean and to identify the relative high risk genotypes of these metabolizing enzymes to head and neck cancer, we have analyzed 133 head and neck cancer patients and corresponding healthy controls matched in age and sex using polymerase chain reaction-restriction fragment length polymorphism (PCR-RELP). In analysis of CYP1A1, the Val/Val genotype of exon 7 polymorphism and m2/m2 genotype of Msp 1 polymorphism were associated with higher relative risks to head and neck cancers (Odds ratio : 2.34, 95% CI : 0.79-6.96 and 1.27, 95% CI : 0.59-2.73, respectively). In combined genotyping of CYP1A1 and GSTMI enzymes polymorphisms, the patients with Val/Val ad GSTM1(-), and m1/m21 and GSTM1(-) combined genotypes had higher relative risks than the patients with each base genotype of combined genotypes (Odds ratio : 4.57, 95% CI : 0.5-41.25 and 1.65, 95% CI L 0.73-3.77, respectively). These results sugget the combined genotyping of metabolizing enzymes could be useful for predicting individual genetic susceptibility and screening the high risk subpopulation to head and neck cancer in Korea.

CYP1A1, GSTM1, GSTT1 and TP53 Polymorphisms and Risk of Gallbladder Cancer in Bolivians

  • Sakai, Kazuaki;Loza, Ernesto;Roig, Guido Villa-Gomez;Nozaki, Ryoko;Asai, Takao;Ikoma, Toshikazu;Tsuchiya, Yasuo;Kiyohara, Chikako;Yamamoto, Masaharu;Nakamura, Kazutoshi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.781-784
    • /
    • 2016
  • The Plurinational State of Bolivia (Bolivia) has a high incidence rate of gallbladder cancer (GBC). However, the genetic and environmental risk factors for GBC development are not well understood. We aimed to assess whether or not cytochrome P450 (CYP1A1), glutathione S-transferase mu 1 (GSTM1), theta 1 (GSTT1) and tumor suppressor protein p53 (TP53) genetic polymorphisms modulate GBC susceptibility in Bolivians. This case-control study covered 32 patients with GBC and 86 healthy subjects. GBC was diagnosed on the basis of histological analysis of tissues at the Instituto de Gastroenterologia Boliviano-Japones (IGBJ); the healthy subjects were members of the staff at the IGBJ. Distributions of the CYP1A1 rs1048943 and TP53 rs1042522 polymorphisms were assayed using PCR-restriction fragment length polymorphism assay. GSTM1 and GSTT1 deletion polymorphisms were detected by a multiplex PCR assay. The frequency of the GSTM1 null genotype was significantly higher in GBC patients than in the healthy subjects (odds ratio [OR], 2.35; 95% confidence interval [CI], 1.03-5.37; age-adjusted OR, 3.53; 95% CI, 1.29-9.66; age- and sex-adjusted OR, 3.40; 95% CI, 1.24-9.34). No significant differences were observed in the frequencies of CYP1A1, GSTT1, or TP53 polymorphisms between the two groups. The GSTM1 null genotype was associated with increased GBC risk in Bolivians. Additional studies with larger control and case populations are warranted to confirm the association between the GSTM1 deletion polymorphism and GBC risk suggested in the present study.

A case-control study on the effects of the genetic polymorphisms of N-acetyltransferase 2 and glutathione S-transferase mu and theta on the risk of bladder cancer (N-Acetyltransferase 2와 glutathione S-transferase mu 및 theta 다형성이 방광암 발생에 미치는 영향에 대한 환자-대조군 연구)

  • Kim, Heon;Kim, Wun-Jae;Lee, Hyung-Lae;Lee, Moo-Song;Kim, Cheol-Hwan;Kim, Ro-Sa;Nan, Hong-Mei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.2 s.61
    • /
    • pp.275-284
    • /
    • 1998
  • Activities of enzymes involved in the metabolism of various carcinogenic xenobiotics is one of the most important host factors for cancer occurrence. N-acetyltransferase (NAT) and glutathione S-transferases (GST) are enzymes which .educe the toxicity of activated carcinogenic metabolites. Slow N-acetylation and lack of GST mu (GSTMI) were reported as risk factors of bladder cancer. GST theta (GSTT1), which is another type of GST, was reported to be deleted at higher proportion among Koreans. Since cause of bladder cancer is not fully explained by single risk factor, many kinds of enzymes would be involved in the metabolism of carcinogens excreted in urine. This study was performed to investigate whether the polymorphisms of NAT2, GSTM1 and GSTT1 are risk factors of bladder cancer and to evaluate the effects of their interaction on bladder cancer development. Sixty-seven bladder cancer and 67 age- and sex-matched non-cancer patients hospitalized in Chungbuk National University Hospital from March to December 1996, are the subjects of this case-control study. Questionnaire interview was done and the genotypes of NAT2, GSTM1 and GSTT1 were identified using PCR methods with DNA extracted from venous blood. The effects of the polymorphism of NAT2 and GSTM1 and their interaction on bladder cancer were statistically tested after controlling the other risk factors. The frequencies of slow, intermediate, and rapid acetylators were 3.0%, 38.8%, and 58.2% to. the cases, and 7.6%, 40.9%, and 51.5% for the controls, respectively. The risk of bladder cancer was not associated with the increase of NAT2 activity($\chi^2_{trend}=1.18$, P-value>0.05). GSTM1 was deleted in 68.7% of the cases and 49.3% of the controls ($\chi^2=5.21$, P-value<0.05), and the odds ratio (95% CI) was 2.23 (1.12 - 4.56). GSTT1 deletion, the .ate of which were 26.9% for the bladder cancer patients and 43.3% for the controls, was a significant protective factor against bladder cancer. Smoking history turned out to be insignificant as a risk factor of bladder cancer (OR=1.85, 95% CI: 0.85 - 4.03), and occupation could not be tested because of the extremely small number of occupational history related to the increase of bladder cancer. In multiple logistic analysis controlling the effects of other risk factors, GSTM1 deletion was the only significant risk factor for bladder cancer (OR: 2.56, 95% CI: 1.22-5.36, P-value<0.05), but slow acetylation and GSTT1 deletion were not. These results suggest that GSTM1 deletion may be a significant risk factor of bladder cancer. Since there have been much debates on causal relationship between slow acetylation and GSTT1 deletion, and bladder cancer, further studies are needed.

  • PDF

CYP1A1 (Ile462Val), CYP1B1 (Ala119Ser and Val432Leu), GSTM1 (null), and GSTT1 (null) Polymorphisms and Bladder Cancer Risk in a Turkish Population

  • Berber, Ufuk;Yilmaz, Ismail;Yilmaz, Omer;Haholu, Aptullah;Kucukodaci, Zafer;Ates, Ferhat;Demirel, Dilaver
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3925-3929
    • /
    • 2013
  • We aimed to investigate bladder cancer risk with reference to polymorphic variants of cytochrome p450 (CYP) 1A1, CYP1B1, glutathione S-transferase (GST) M1, and GSTT1 genes in a case control study. Polymorphisms were examined in 114 bladder cancer patients and 114 age and sex-matched cancer-free subjects. Genotypes were determined using allele specific PCR for CYP1A1 and CYP1B1 genes, and by multiplex PCR and melting curve analysis for GSTM1 and GSTT1 genes. Our results revealed a statistically significant increased bladder cancer risk for GSTT1 null genotype carriers with an odds ratio of 3.06 (95% confidence interval=1.39-6.74, p=0.006). Differences of CYP1A1, CYP1B1 and GSTM1 genotype frequencies were not statistically significant between patients and controls. However, the specific combination of GSTM1 null, GSTT1 null, and CYP1B1 codon 119 risk allele carriers and specific combination of GSTM1 present, GSTT1 null, and CYP1B1 432 risk allele carriers exhibited increased cancer risk in the combined analysis. We did not observe any association between different genotype groups and prognostic tumor characteristics of bladder cancer. Our results indicate that inherited absence of GSTT1 gene may be associated with bladder cancer susceptibility, and specific combinations of GSTM1, GSTT1 and CYP1B1 gene polymorphisms may modify bladder cancer risk in the Turkish population, without any association being observed for CYP1A1 gene polymorphism and bladder cancer risk.

A Case-Control Study on Effects of Genetic Polymorphisms of GSTM1, GSTT1, CYP1A1 and CYP2E1 on Risk of Lung Cancer (GSTM1과 GSTT1, 그리고 CYP1A1, CYP2E1 다형성이 폐암발생에 미치는 영향에 대한 환자-대조군연구)

  • Nan, Hong-Mei;Kang, Jong-Won;Bae, Jang-Whan;Choe, Kang-Hyeon;Lee, Ki-Hyeong;Kim, Seung-Taik;Won, Choong-Hee;Kim, Yong-Min;Kim, Heon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.2
    • /
    • pp.123-129
    • /
    • 1999
  • Objectives: This study was performed to investigate sweets of genetic polymorphisms of glutathione S-transferase M1 (GSTM1), glutathione S-transferase M1 (GSTT1), cytochrome P450 1A1 (CYP1A1) and cytoehrome P450 2E1 (CYP2E1) on lung cancer development. Methods: Ninety-eight lung cancer patients and 98 age-sex matched non-cancer patients hospitalized in Chungbuk National University Hospital form March 1997 to August 1998, were the subjects of this case-control study. Direct interview was done and genotypes of GSTM1, GSTT1, CYP1A1 and CYP2E1 were investigated using multiplex PCR or PCR-RFLP methods with DNA extracted from venous blood. Effects of the polymorphisms of GSTM1, GSTT1, CYP1A1 and CYP2E1, lifestyle factors including smoking, and their interactions on lung rancor were statistically analyzed. Results: GSTM1 was deleted in 67.01% of the cases and 58.16% of the controls, and the odds ratio(95% CI) was 1.46(0.82-2.62). GSTT1 deletion was 58.76% for the lung cancer patients and 50.00% for the controls[OR:1.43(0.81-2.51)]. The frequencies of lle/lle, lle/Val and Val/Val of the CYP1A1 polymorphisms were 59.18-18%, 35.71%, and 5.10% for the cases, and 52.04%, 45.92%, 2.04% for the controls, respectively. Risk of lung cancer was not associated with polymorphism of CYP1A1 ($x^2trend=0.253$, p-value>0.05). The respective frequency of c1/c1 c1/c2, c2/c2 genotypes for CYP2E1 were 50.00%, 42.86%, 7.14% for the lung cancer patients, and 66.33%, 30.61%, 3.06% for the controls $(x^2trend=5.783,\;p<0.05)$. c2 allele was a significant risk factor for lung cancer. We also observed a significant association of cigarette smoking history with lung cancer risk. The odds ratio(95% Cl) of cigarette smoking was 3.03(1.58-5.81). In multiple logistic analysis including genotypes of GSTM1, GSTT1, CYP1A1 and CYP2E1, and smoking habit, only snaking habit came out to be a significant risk factor for lung cancer. Conclusion: Genetic polymorphisms of GSTM1, GSTT1, CYP1A1 and CYP2E1 are not so strongly associated with lung cancer as lifestyle factors including cigarette smoking.

  • PDF

GSTP1 Gene Ile105Val Polymorphism Causes an Elevated Risk for Bladder Carcinogenesis in Smokers

  • Pandith, Arshad Ahmad;Lateef, Adil;Shahnawaz, Sheikh;Hussain, Aashaq;Malla, Tahir Mohiuddin;Azad, Niyaz;Shehjar, Fahim;Salim, Mosin;Shah, Zafar Amin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6375-6378
    • /
    • 2013
  • Background: The glutathione S transferase (GST) family of enzymes plays a vital role in the phase II biotransformation of environmental carcinogens, pollutants, drugs and other xenobiotics. GSTs are polymorphic and polymorphisms in GST genes have been associated with cancer susceptibility and prognosis. GSTP1 is associated with risk of various cancers including bladder cancer. A case control study was conducted to determine the genotype distribution of GSTP1 A>G SNP, to elucidate the possible role of this SNP as a risk factor in urinary bladder cancer (UBC) development and to examine its correlation with clinico-pathologic variables inUBC cases. Materials and Methods: Using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach, we tested the genotype distribution of 180 bladder cancer patients in comparison with 210 cancer-free controls from the same geographical region with matched frequency in age and gender. Results: We did not observe significant genotype differences between the control and bladder cancer patients overall with an odds ratio (OR)=1.23 (p>0.05). The rare allele (AG+GG) was found to be present more in cases (28.3%) than in controls (24%), though the association was not significant (p<0.05). However, a significant risk of more than 2-fold was found for the variant allele (AG+GG) with smokers in cases as compared to controls (p>0.05). Conclusions: Thus, it is evident from our study that GSTP1 SNP is not implicated overall in bladder cancer, but that the rare, valine-related allele is connected with higher susceptibility to bladder cancer in smokers and also males.

Susceptibility of Lung Cancer with Polymorphisms of CYP1A1, GSTM1, GSTM3, GSTT1 and GSTP1 Genotypes in the Population of Inner Mongolia Region

  • Jiang, Xue-Yan;Chang, Fu-Hou;Bai, Tu-Ya;Lv, Xiao-Li;Wang, Min-Jie;Wang, Guang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5207-5214
    • /
    • 2014
  • Background: To study the relationship of susceptibility to lung cancer with the gene polymorphisms of CYP1A1, GSTM1, GSTM3, GSTT1, GSTP1 and smoking status in Han and Mongolian populations of Inner Mongolia, an autonomous region of China. Materials and Methods: PCR-RFLP, allele-specific and multiplex PCR were employed to identify the genotypes of CYP1A1, GSTM1, GSTM3, GSTT1 and GSTP1 in a case-control study of 322 lung cancer patients diagnosed by bronchoscopy and 456 controls free of malignancy. Results: There is a significant difference in genotypic frequency of GSTT1 of healthy Mongolian and Han subjects. A statistically prominent association was found between CYP1A1 Msp1 (vt/vt) (OR=4.055, 95%CI:2.107-7.578, p=0.000), GSTM1 (-) (OR=2.290, 95%CI:1.467-3.573, p=0.000) and lung cancer in Mongolians. Similarly, in the Han population, CYP1A1 Msp1 (vt/vt) (OR=3.194, 95%CI:1.893-5.390, p=0.000) and GSTM1 (-) (OR=1.884, 95%CI:1.284-2.762, p=0.001) carriers also had an elevated risk of lung cancer. The smokers were more susceptible to lung cancer 2.144 fold and 1.631 fold than non-smokers in Mongolian and Han populations, respectively. The smokers who carried with CYP1A1 Msp1 (wt/vt+vt/vt), exon7 (Val/Val+Ile /Val), GSTM1 (-), GSTM3 (AB+BB), and GSTT1 (-) respectively were found all to have a high risk of lung cancer. Conclusions: CYP1A1 Msp1 (vt/vt) and GSTM1 (-) are risk factors of lung cancer in Han and Mongolian population in the Inner Mongolia region. The smokers with CYP1A1 Msp1 (wt/vt+vt/vt), CYP1A1 exon7 (Val/Val+Ile /Val), GSTM1 (-), GSTM3 (AB+BB), and GSTT1 (-) genotypes, respectively, are at elevated risk of lung cancer.