• Title/Summary/Keyword: glutamate toxicity

Search Result 59, Processing Time 0.032 seconds

Laccase Fermentation of Clove Extract Increases Content of Dehydrodieugenol, Which Has Neuroprotective Activity against Glutamate Toxicity in HT22 Cells

  • Lee, Han-Saem;Yang, Eun-Ju;Lee, Taeho;Song, Kyung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.246-254
    • /
    • 2018
  • Enzyme fermentation is a type of food processing technique generally used to improve the biological activities of food and herbal medicines. In this study, a Syzygii Flos (clove) extract was fermented using laccase derived from Trametes versicolor (LTV). The fermented clove extract showed greater neuroprotective effects against glutamate toxicity on HT22 than the non-fermented extract did. HPLC analysis revealed that the eugenol (1) and dehydrodieugenol (2) contents had decreased and increased, respectively, after fermentation. The content of 2 peaked at 1 h after fermentation to $103.50{\pm}8.20mg/g_{ex}$ (not detected at zero time), while that of 1 decreased to $79.54{\pm}4.77mg/g_{ex}$ ($185.41{\pm}10.16mg/g_{ex}$ at zero time). Compound 2 demonstrated promising HT22 neuroprotective properties with inhibition of $Ca^{2+}$ influx, the overproduction of intracellular reactive oxygen species, and lipid peroxidation. In addition, LTV showed the best fermentation efficacy compared with laccases derived from Pleurotus ostreatus and Rhus vernicifera.

Effects of Cholinesterase Inhibitors on Neuronal Injuries in Primary Cultured Rat Cortical Cells (배양한 대뇌피질세포에서 유발한 신경손상에 대한 콜린에스테라제 억제제의 영향)

  • 독고향;이광헌;조정숙
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.185-191
    • /
    • 2002
  • Alzheimer's disease (AD) involves neuronal degeneration with impaired cholinergic transmission, particularly in areas of the brain associated with learning and memory. Several cholinesterase inhibitors are widely prescribed to ameliorate the cognitive deficits in AD patients. In an attempt to examine if tacrine and donepezil, two well-known cholinesterase inhibitors, exhibit additional pharmacological actions in primary cultured rat cortical cells, we investigated the effects on neuronal injuries induced by glutamate or N-methyl-D-aspartate (NMDA), $\beta$-amyloid fragment ( $A_{{beta}25-35)}$), and various oxidative insults. Both tacrine and donepezil did not significantly inhibit the excitotoxic neuronal damage induced by glutamate. However, tacrine inhibited the toxicity induced by NMDA in a concentration-dependent fashion. In addition, tacrine significantly inhibited the $A_{{beta}25-35)}$-induced neuronal injury at the concentration of 50 $\mu$M. In contrast, donepezil did not reduce the NMDA- nor $A_{{beta}25-35)}$-induced neuronal injury. Tacrine and donepezil had no effects on oxidative neuronal injuries in cultures nor on lipid peroxidation in vitro. These results suggest that, in addition to its anticholinesterase activity, the neuroprotective effects by tacrine against the NMDA- and $A_{{beta}25-35)$-induced toxicity may be beneficial for the treatment of AD. In contrast, the potent and selective inhibition of central acetylcholinesterase appears to be the major action mechanism of donepezil.

Effects of Spermine on Quisqualate-induced Excitotoxicity in Rat Immature Cortical Neurons (흰쥐 미숙 대뇌피질 신경세포에서 Quisqualate로 유발된 흥분성 세포독성에 대한 spermine의 영향)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.535-540
    • /
    • 1999
  • Glutamate (Glu) receptor-mediated excitoxicity has been implicated in many acute and chronic types of neurological disorders. Exposure of mature rat cortical neurons (15-18 days in culture) to the various concentrations of Glu resulted in a marked neuronal death, whereas immature rat cortical neurons (4∼5 days in culture) were resistant to the Glu-induced toxicity. Glu receptor subtype-specific agonists showed differential extent of toxicity in the immature neurons. The neurons treated with NMDA or kainate (KA) did not exhibit damage. However, quisqualate (QA) treatment induced a considerable cell death (36.1%) in immature enurons. The non-NMDA antagonist DNQX did not reduce this response. Interestingly, the QA-induced toxicity was potentiated by spermine in a concentration-dependent manner. Again, the spermine-enhanced damage was not altered by the polyamine antagonist ifenprodil. Taken together, unlike NMDA or KA, QA can induce neurotoxicity in immature rat cortical neurons and the QA-induced toxicity was potentiated by spermine. The lack of antagonizing effects of DNQX and ifenprodil on QA-induced toxicity and the potentiated toxicity by spermine, respectively, implies that both QA receptor and the polyamine site of NMDA receptor may not mediate the neurotoxicity observed in this study, and that a distinct mechanism(s) may be involved in excitotoxicity in immature neurons.

  • PDF

Shifts in Protein Metabolism in Hemolymph and Fat Body of the Silkworm, Bombyx mori L. in Response to Fluoride Toxicity

  • Ramakrishna, S.;Jayaprakash, Jayaprakash
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2007
  • Changes in protein metabolism were studied in hemolymph and fat body on days 1, 3, 5 and 7 of the fifth-instar silkworm, Bombyx mori, exposed to lethal, sublethal doses and prevailing levels of fluoride in groundwater in Karnataka and Andhra Pradesh States of India. The total protein content indicated a depletion followed by a concomitant increase in accumulation of free amino acids. Concurrently, the activity of protease in both of the tissues was also increased. A steady enhancement in the activities of alanine aminotransferase and aspartate aminotransferase paralleled the elevation of glutamate dehydrogenase activity in the tissues studied. It is presumed, on the basis of these results, that the fluoride toxicity causes major changes in protein metabolism of the silkworms.

Neuroprotective Effect of the Aerial Parts of Taraxacum officinale on Glutamate-induced Oxidative Injury in Mouse Hippocampal HT22 Cells (글루타메이트로 유도된 쥐 해마 HT22 세포의 산화적 손상에 대한 서양민들레 지상부의 뇌신경세포 보호활성)

  • Li, Bin;Lee, Dong-Sung;Choi, Hyun-Gyu;Kim, Kyung-Su;Ji, Hye-Young;Rho, Jung-Mi;Kim, Ki-Mo;Kim, Youn-Chul
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.314-318
    • /
    • 2011
  • Glutamate-induced oxidative injury contributes to neuronal degeneration in many central nervous system (CNS) diseases, such as epilepsy and ischemia. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of these diseases. In the present study, we investigated the neuroprotective effects of the standard extracts of Taraxacum officinale Weber, one of the original plants of Taraxaci Herba, on glutamate-induced oxidative injury in mouse hippocampal HT22 cells. The standard EtOH extract of the aerial parts of T. officinale (NNMBS270) showed significant cytoprotective effects on glutamate-induced neurotoxicity and induced the expression of heme oxygenase (HO)-1 in the mouse hippocampal HT22 cells, while the roots' extract (NNMBS271) did not show neuroprotective effect. These results suggest that the extract of the aerial parts of T. officinale could be an effective candidate for the treatment of ROS-related neurological diseases.

Protective Effect of Selected Amino Acids and Food Extracts on Ethanol Toxicity Decrement in Rat Liver (일부 아미노산과 식품 추출물의 에탄올 간독성에 대한 보호효과)

  • Lee, Ja-Hyun;Kim, N.K.;Lee, Do-Youn;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.802-808
    • /
    • 1999
  • An rat liver enzyme test was carried out in order to investigate preventing effect of selested amino acids and some food extracts on ethanol induced liver toxicity in vitro. Solutions of aspartic acid, arginine, glutamic acid were prepared and treated on ethanol treated rat liver preparation. Protective effect of amino acids on lipid peroxidation was determined. Same experiments were conducted using aqueous extracts of Dried soybean sprout, Dried Alaskan pollack and Ganoderma lucidum. The TBA value indicating the lipid peroxidation decreased significantly (p<0.05) by addition of aspartate, glutamate and arginine, repectively at concentrations of $6.25{\sim}50\;{\mu}g/mL$. Similar results were observed by adding the aqueous extracts of Soybean sprout, dried Alaskan pollack and Ganoderma lucidum. The aqueous extracts added after ethanol treatment presemted more effect than added before the treatment.

  • PDF

Protective Effect of Fangchinoline on Cyanide-Induced Neuro-toxicity in Cultured Rat Cerebellar Granule Cells

  • Cho, Soon-Ok;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a $Ca^{2+}$ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type$Ca^{2+}$channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 $\mu$M significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of $[Ca^{2+}]_i$ and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with $[Ca^{2+}]_i$influx, due to its function as a $Ca^{2+}$ channel blocker, and then by inhibiting glutamate release and oxidants generation.

The Neuroprotective Activity Of Lignans Isolated From Machilus thunbergii

  • Ma, Choong-Je;Kim, Seung-Hyun;Kang, So-Young;Koo, Kyung-Ah;Sung, Sang-Hyun;Lee, Ki-Yong;Lee, Ho-Yeon;Kim, Young-Choong
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.195.2-195.2
    • /
    • 2003
  • The CH$_2$Cl$_2$ fraction of the bark of Machilus thunbergii Sieb. et Zucc. (Lauraceae) significantly protected primary cultures of rat cortical cells exposed to the excitotoxic amino acid, L-glutamate. Several lignans including (-)-isoguaiacin, meso- dihydroguaiaretic acid, machilin A, (+)-galbelgin, licarin A, (-)-sesamin, and (+)-guaiacin were isolated from the CH$_2$Cl$_2$ fraction using by bioactivity-guided isolation techniques. Among these lignans, (-)-isoguaiacin, meso-dihydroguaiaretic acid, licarin A and (+)-guaiacin had significant neuroprotective activities against glutamate-induced toxicity in primary cultures of rat cortical cells at concentration ranging from 0.1 ${\mu}$M to 10.0 ${\mu}$M. (omitted)

  • PDF