• 제목/요약/키워드: glut2

검색결과 175건 처리시간 0.027초

Nutritional Intervention Through Ketogenic Diet in GLUT1 Deficiency Syndrome

  • Young-Sun Kim;Woojeong Kim;Ji-Hoon Na;Young-Mock Lee
    • Clinical Nutrition Research
    • /
    • 제12권3호
    • /
    • pp.169-176
    • /
    • 2023
  • Glucose transporter type 1 (GLUT1) deficiency syndrome (DS) is a metabolic brain disorder caused by a deficiency resulting from SLC2A1 gene mutation and is characterized by abnormal brain metabolism and associated metabolic encephalopathy. Reduced glucose supply to the brain leads to brain damage, resulting in delayed neurodevelopment in infancy and symptoms such as eye abnormalities, microcephaly, ataxia, and rigidity. Treatment options for GLUT1 DS include ketogenic diet (KD), pharmacotherapy, and rehabilitation therapy. Of these, KD is an essential and the most important treatment method as it promotes brain neurodevelopment by generating ketone bodies to produce energy. This case is a focused study on intensive KD nutritional intervention for an infant diagnosed with GLUT1 DS at Gangnam Severance Hospital from May 2022 to January 2023. During the initial hospitalization, nutritional intervention was performed to address poor intake via the use of concentrated formula and an attempt was made to introduce complementary feeding. After the second hospitalization and diagnosis of GLUT1 DS, positive effects on the infant's growth and development, nutritional status, and seizure control were achieved with minimal side effects by implementing KD nutritional intervention and adjusting the type and dosage of anticonvulsant medications. In conclusion, for patients with GLUT1 DS, it is important to implement a KD with an appropriate ratio of ketogenic to nonketogenic components to supply adequate energy. Furthermore, individualized and intensive nutritional management is necessary to improve growth, development, and nutritional status.

Nutritional Regulation of GLUT Expression, Glucose Metabolism, and Intramuscular Fat Content in Porcine Muscle

  • Katsumata, M.;Kaji, Y.;Takada, R.;Dauncey, M.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권8호
    • /
    • pp.1297-1304
    • /
    • 2007
  • We conducted a series of investigations in order to elucidate role of nutritional status in regulating GLUT expression and energy metabolism in porcine muscle. Firstly, the role of mild undernutrition in regulating muscle GLUT gene expression and function was studied in growing pigs (3 wk of age) on a high (H) or low (L) food intake (H = 2L) at $35^{\circ}C$ or $26^{\circ}C$. Low food intake selectively upregulates GLUT1 and GLUT4 gene expression; mRNA levels were elevated in longissimus dorsi (L. dorsi) and rhomboideus muscles but not in diaphragm or cardiac muscles. Our next step was to determine whether dietary lysine, a major primary limiting amino acid in diets for pigs, affects muscle GLUT4 expression. Pigs of 6 wk of age were pair-fed a control or low lysine (LL) diet. The control diet contained optimal amounts of all essential amino acids, including 1.15% lysine. The LL diet was similar but contained only 0.70% lysine. GLUT4 mRNA expression was upregulated by the LL diet in L. dorsi and rhomboideus muscles, whereas that in cardiac muscle was unaffected. GLUT4 protein abundance was also higher in rhomboideus muscle of animals on the LL diet. We conducted another investigation in order to elucidate effects of the LL diet on post-GLUT4 glucose metabolism. Activity of hexokinase was unaffected by dietary lysine levels while that of citrate synthase was higher both in L. dorsi and rhomboideus muscles of pigs fed on the LL diet. Glucose 6-phosphate content was higher in L. dorsi msucle in the LL group. Glycogen content was higher both in L. dorsi and rhomboideus muscles in the LL group. Further, we determined the effects of dietary lysine levels on accumulation of intramuscular fat (IMF) in L. dorsi muscle of finishing pigs. A low lysine diet (lysine content was 0.40%) meeting approximately 70% of the requirement of lysine was given to finishing pigs for two months. IMF contents in L. dorsi of the pigs given the low lysine diet were twice higher than those of the pigs fed on a control diet (lysine content was 0.65%). Finally, we proved that a well known effect of breadcrumbs feeding to enhance IMF of finishing pigs could be attributed to shortage of amino acids in diets including breadcrumbs.

Glucose transport 1 deficiency presenting as infantile spasms with a mutation identified in exon 9 of SLC2A1

  • Lee, Hyun Hee;Hur, Yun Jung
    • Clinical and Experimental Pediatrics
    • /
    • 제59권sup1호
    • /
    • pp.29-31
    • /
    • 2016
  • Glucose transport 1 (GLUT-1) deficiency is a rare syndrome caused by mutations in the glucose transporter 1 gene (SLC2A1) and is characterized by early-onset intractable epilepsy, delayed development, and movement disorder. De novo mutations and several hot spots in N34, G91, R126, R153, and R333 of exons 2, 3, 4, and 8 of SLC2A1 are associated with this condition. Seizures, one of the main clinical features of GLUT-1 deficiency, usually develop during infancy. Most patients experience brief and subtle myoclonic jerk and focal seizures that evolve into a mixture of different types of seizures, such as generalized tonic-clonic, absence, myoclonic, and complex partial seizures. Here, we describe the case of a patient with GLUT-1 deficiency who developed infantile spasms and showed delayed development at 6 months of age. She had intractable epilepsy despite receiving aggressive antiepileptic drug therapy, and underwent a metabolic workup. Cerebrospinal fluid (CSF) examination showed CSF-glucose-to-blood-glucose ratio of 0.38, with a normal lactate level. Bidirectional sequencing of SLC2A1 identified a missense mutation (c.1198C>T) at codon 400 (p.Arg400Cys) of exon 9.

다양한 사람 종양세포주에서 F-18-FDG의 섭취와 Hexokinase 활성 및 Glut-1 발현과의 상관관계 (The Relationship between F-18-FDG Uptake, Hexokinase Activity and Glut-1 Expression in Various Human Cancer Cell Lines)

  • 김보광;정준기;이용진;최용운;정재민;이동수;이명철
    • 대한핵의학회지
    • /
    • 제34권4호
    • /
    • pp.294-302
    • /
    • 2000
  • 목적: 종양세포에서 F-18-FDG 섭취 기전을 규명하기 위하여 F-18-FDG 섭취와 포도당운반체-1 (Glut-1), hexokinase의 발현과의 상관관계를 조사하였다. 대상 및 방법: 사람의 대장암(SNU-C2A, SNU-C4, SNU-C5), 간암(SNU-387, SNU-423, SNU-449), 폐암(NCI-H522, NCI-H358, NCI-H1299), 자궁경부암(HeLa, HeLa 229, HeLa S3), 그리고 뇌암(A172, Hs 683)에서 기원한 암 세포주 $5{\times}10^5$ 세포를 24 well plate에 24시간 배양하였다. 여기에 37 kBq의 F-18-FDG를 첨가한 후 각 세포의 섭취 정도를 감마 카운터를 사용하여 측정하였다. Hexokinase의 활성은 분광광도계를 사용하여 측정하였다. 디토콘드리아에서의 hexokinase 활성은 고속원심분리기를 이용하여 미토콘드리아 분획을 분리하여 조사하였다. Glut-1의 발현은 면역조직염색법으로 측정하였다. 결과: 종양세포의 종류에 따라 F-18-FDG 섭취, 전체 그리고 미토콘드리아 hexokinase 활성, 그리고 Glut-1의 발현 정도에 차이가 있었다. 종양세포주에서 F-18-FDG 섭취와 세포전체, 세포내 미토콘드리아 hexokinase 활성과의 상관관계(각각 r=0.27, r=0.26)는 낮게 나타났으며, Glut-1의 발현은 F-18-FDG의 섭취와 상관관계(p=0.81, p=0.0015)가 높았다. 대장암 세포주에서 F-18-FDG 섭취와 hexokinase 활성의 상관관계가 없다는 보고를 토대로 대장암 세포주 결과를 제외했을 경우에 F-18-FDG의 섭취와 세포전체 그리고 세포내 미토콘드리아에서의 hexokinase 활성과는 높은 상관관계(각각 r=0.81, p=0.0027, 그리고 r=0.81, p=0.0049)를 보였다. 결론: Glut-1이나 hexokinase 활성이 사람 종양 세포주에서 F-18-FDG의 섭취를 결정하는 주 요인이며, 종양세포의 종류에 따라 이들의 기여도는 서로 다름을 알 수 있었다.

  • PDF

Antidiabetic Activity and Mechanisms of Acarbose in $KKA^{y}$ Mice

  • Kim, Young-Lim;Chung, Sung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권2호
    • /
    • pp.183-188
    • /
    • 2001
  • To elucidate antidiabetic effect and mechanism(s) of acarbose in a polygenic spontaneous hyperglycemic and hyperinsulinemic diabetic animal model, $KKA^y$ mice, acarbose was administered orally for 4 weeks and effects on body weight, plasma glucose and insulin levels, genetic expressions of intestinal sucrase-isomaltase (SI), sodium-glucose cotransporter (sGLT1) and glucose transporter in quadriceps muscle (GLUT4) were examined in this study. Although no differences in body weight were detected between control and acarbose-treated groups, plasma glucose level in acarbose-treated group was markedly reduced as compared to the control. In the mechanism study, acarbose downregulated the SI and SGLT1 gene expressions, and upregulated the GLUT4 mRNA and protein expressions when compared to the control group. In conclusion, the data obtained strongly implicate that acarbose can prevent the hyperglycemia in $KKA^y$ mice possibly through blocking intestinal glucose absorption by downregulations of SI and sGLT1 mRNA expressions, and upregulation of skeletal muscle GLUT4 mRNA and protein expressions.

  • PDF

Immunohistochemical Evaluation of Glucose Transporter Type 1 in Epithelial Dysplasia and Oral Squamous Cell Carcinoma

  • Pereira, Karuza Maria Alves;Feitosa, Sthefane Gomes;Lima, Ana Thayssa Tomaz;Luna, Ealber Carvalho Macedo;Cavalcante, Roberta Barroso;Lima, Kenio Costa de;Chaves, Filipe Nobre;Costa, Fabio Wildson Gurgel
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권1호
    • /
    • pp.147-151
    • /
    • 2016
  • Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity and some of these have been documented in association or preceded by oral epithelial dysplasia (OED). Aggressive cancers with fast growth have demonstrated overexpression of some glucose transporters (GLUTs). Thus, the aim of this study was to analyze the immunohistochemical expression of the glucose transporter, GLUT-1, in OEDs and OSCCs, seeking to better elucidate the biological behavior of neoplasias. Fifteen cases were selected this research of both lesions. Five areas were analyzed from each case by counting the percentage of positive cells at 400x magnification. Immunoreactivity of GLUT-1 was observed in 100% of the samples ranging from 54.2% to 86.2% for the OSCC and 73.9% to 97.4% for the OED. Statistical test revealed that there was greater overexpression of GLUT-1 in OED than the OSCC (p=0.01). It is believed the high expression of GLUT-1 may reflect the involvement of GLUT-1 in early stages of oral carcinogenesis.

상백피탕(桑白皮湯)과 수풍순기환(搜風順氣丸)이 db/db Mice의 당대사(糖代謝)에 미치는 영향(影響) (A Study on the Effect of Sangbaegpitang & Supungsungiwhan on the Glucose Metabolism of db/db Mice)

  • 이성현;안세영;두호경
    • 대한한의학회지
    • /
    • 제20권2호
    • /
    • pp.108-120
    • /
    • 1999
  • In this study, body weight levels of glucose, insulin and triglyceride in blood and glucosidase activity of the small intestine were investigated to determine the effect of Sangbaegpitang and Supungsungiwhan on the glucose metabolism of db/db mice. The GLUT4 mRNA of muscle tissue and the Acetyl CoA Carboxylase and the activation rate of GLUT2 mRNA of liver tissue were measured by the reverse transcription-polymerase chain reaction method and by the vitro transcription. The results were obtained as follows: 1. In the Sangbaegpitang administration group, (1) The level of triglyceride was decreased significantly and the glucosidase activity of the small intestine was inhibited remarkably, (2) The amounts of the GLUT4 mRNA in muscle tissue and Acetyl CoA Carboxylase mRNA in liver tissue were increased significantly. (3) Though glucose level in both fasting and non-fasting, were decreased and the insulin level in blood was increased, the results showed no statistical significance. 2. In the Supungsungiwhan administration group, (1) The levels of glucose and triglyceride were decreased significantly in the blood of non-fasting animals. (2) The glucosidase activity of small intestine was inhibited markedly and the amounts of GLUT4 mRNA of muscle tissue and GLUT2 mRNA of liver tissue were increased significantly. (3) The glucose levels in the fasting group were reduced, while insulin level was increased but showed no statistical significance, Based on the above results, our conclusions are as follows: Sangbaegpitang & Supungsungiwhan are thought to be capable of inhibiting the activity glucosidase, the enzyme which influences carbohydrate metabolism in the small intestine of db/db mice(the experimental diabetic model) and delaying the absorption of carbohydrate, thus proving effective on inhibiting the increase of non-fasting glucose level effectively. Futhermore Sangbaegpitang and Supungsungiwhan are though: to be capable of preventing the composition of free fatty acids by restoring the production of GLUT4 mRNA of muscle tissues and GLUT2 mRNA of liver tissues. Those results suggests that above prescriptions can be applied to non-insulin dependent diabetes mellitus in order to improve insulin resistance.

  • PDF

고지방식유래의 뇌졸중 유발 고혈압 흰쥐(SHRSP)에 있어서 수용성 식이 섬유의 급여가 근섬유 형태에 따른 GLUT4 발현에 미치는 영향 (Effects of Soluble Dietary Fiber on Skeletal Muscle GLUT4 Protein Contents in SHRSP Fed a High-Fat Diet)

  • 송영주
    • Journal of Nutrition and Health
    • /
    • 제33권7호
    • /
    • pp.712-716
    • /
    • 2000
  • The Purpose of this study is to investigate the effect of soluble dietary fiber psyllium on insulin sensitivity and skeletal muscle glucose transporter 4(GLUT4) protein expression in stroke-prone hypertensive rats(SHRSP) fed a high-fat diet containing 5% of psyllium or cellulose from five to nine weeks of age. Obtained results were as follows : (1) In the psyllium diet group fasting plasma glucose level was significantly reduced and glucose levels upon oral glucose tolerance test were significantly lower than cellulose diet group at 30 min(p<0.05) and 60 min(p<0.01) (2) Skeletal muscle GLUT4 contents were significantly increased in the soleus(slow twitch) and extensor digitorum longus(fast twitch) muscle of psyllium diet group. (3) However there was no difference in insulin levels in the fasting and oral glucose tolerance test. These results indicated that psyllium diet improves peripheral insulin sensitivity but not insulin secretion. In conclusion our present finding suggest that soluble fiber diet is effective to increase insulin sensitivity in SHRSP. From these results it was suggested that soluble dietary fiber supplementation effectively prevents insulin resistance.

  • PDF

A Korean patient with Fanconi-Bickel Syndrome Presenting with Transient Neonatal Diabetes Mellitus and Galactosemia : Identification of a Novel Mutation in the GLUT2 Gene

  • Yoo, Han-Wook;Seo, Eul-Ju;Kim, Gu-Hwan
    • 대한유전성대사질환학회지
    • /
    • 제1권1호
    • /
    • pp.23-27
    • /
    • 2001
  • Fanconi-Bickel Syndrome (FBS) is a rare autosomal recessive disorder of carbohydrate metabolism recently demonstrated to be caused by mutations in the GLUT 2 gene for the glucose transporter protein 2 expressed in liver, pancreas, intestine, and kidney. This disease is characterized by hepatorenal glycogen accumulation, both fasting hypoglycemia as well as postprandial hyperglycemia and hyperglactosemia, and generalized proximal renal tubular dysfunctions. We report the first Korean patient with FBS diagnosed based on clinical manifestations and identification of a novel mutation in the GLUT 2 gene. She was initially diagnosed having a neonatal diabetes mellitus due to hyperglycemia and glycosuria at 3 days after birth. In addition, newborn screening for galactosemia revealed hypergalactosemia. Thereafter, she has been managed with lactose free milk, insulin therapy. However, she failed to grow and her liver has been progressively enlarging. Her liver functions were progressively deteriorated with increased prothrombin time. Liver biopsy done at age 9 months indicated micronodular cirrhosis with marked fatty changes. She succubmed to hepatic failiure with pneumonia at 10 months of age. Laboratory tests indicated she had generalized proximal renal tubular dysfuctions; renal tubular acidosis, hypophosphatemic rickets, and generalized aminoaciduria. Given aforementioned findings, the diagnosis of FBS was appreciated at age of 2 months. The DNA sequencing analysis of the GLUT 2 gene using her genomic DNA showed a novel mutation at 5th codon; Lysine5 Stop (K5X).

  • PDF

사람 폐암 세포주에서 포도당 운반 단백 유전자의 발현 (Glucose Transporter Gene Expression in Human Lung Cancer Cell Lines)

  • 김우진;임재준;이재호;유철규;정희순;한성구;정준기;심영수;김영환
    • Tuberculosis and Respiratory Diseases
    • /
    • 제45권4호
    • /
    • pp.760-765
    • /
    • 1998
  • 연구배경: 암세포에서 포도당의 유입이 증가되어 있다는 사실이 오래 전부터 알려져 왔고 이런 현상을 이용하여 FDG-PET 영상이 암의 진단에 이용되고 있다. 그러나, 암세포에서 포도당 유입이 증가하는 기전에 대해서는 모르고 있다. 최근, 여러 연구에서 소화기계의 악성종양과 두경부종양에서 포도당 운반체의 mRNA 의 존재가 증명되었고, 포도당 운반체가 암세포에서의 포도당 유입 증가와 관련이 있을 가능성을 시사하였다. 폐암에서도 포도당대사가 항진되어 있다. 저자등은 폐암에서의 포도당 유입이 증가하는 기전에 대해 알아 보기 위하여 사람 폐암세포주에서 포도당 mRNA의 발현여부를 확인하였다. 방 법: 15종의 사람 폐암 세포주와 불멸화시킨 기관지 상피세포주에서 total RNA를 추출하였다. $20{\mu}g$의 total RNA를 전기영동시킨후, 포도당 운반체 1형과 3 형에 대한 cDNA를 probe로 Northern blot analysis를 시행하였다. 결 과: 14종의 사람 폐암 세포주중에서 13종에서 포도당 운반체 1형의 mRNA 발현을 확인하였고, 14종의 사람 폐암 세포주중에서 10종에서 포도당 운반체 3형의 mRNA 발현을 확인하였다. 불멸화시킨 기관지 상피세포주의 포도당 운반체 1형의 mRNA 발현을 확인할 수 있었고 3형의 mRNA 발현은 확인할 수 없었다. 결 론: 폐암에서 포도당 대사의 증가는 포도당 운반체 1형과 3형의 발현과 관련이 있을 것으로 사료된다.

  • PDF