• Title/Summary/Keyword: glulam

Search Result 75, Processing Time 0.031 seconds

Characterization of Radial Stress in Curved Beams

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2009
  • Curved glued laminated timber (glulam) is rapidly coming into the domestic modern timber frame buildings and predominant in building construction. The radial stress is frequently occurred in curved beams and is a critical design parameter in curved glulam. Three models, Wilson equation, Exact solution and Approximation equation were introduced to determine the radial stress of curved glulam under pure bending condition. It is obvious that radial stress distribution between small radius and large radius was different due to slight change of neutral plane location to center line. If the beam design with extremely small radius, it should be considered to determine the exact location of maximum radial stress. The current standard KSF 3021 was reviewed and would be considered some adjustment determining the optimum radius in curved glulam. Current design principle is that the stress factor is given by the curvature term only in constant depth of the beam, but like tapered or small radius of beams, the stress factor by Wilson equation was underestimated. So current design formula should be considered to improvement for characterizing the radial stress factor under pure bending condition.

Feasibility of Non-Korean Standard Glulam Using a Lower Grade Lamina of Japanese cedar for Structural Use

  • Oh, Jung-Kwon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.85-93
    • /
    • 2010
  • Japanese cedar has low density and poor mechanical performance. Manufacturing glue-laminated timber (glulam) is the best way to compensate for its poor mechanical performance. The Korean Standard (KS) confines outermost lamina of glulam to higher grade than E8, but the yield of higher than grade E8 from logs is only 6.5%. Therefore, the aim of this study is to investigate the possibility of non-Korean-Standard glulam in structural applications. Allowable stresses determined by both hand-calculation and Monte-Carlo simulation show a higher allowable stress than that of the KS-standard glulam of 6S-22B. In the Korean Standard (KS), knot characteristics are not taken into account. Japanese cedar has relatively small knots. We believe that the small knots in Japanese cedar contribute to a higher allowable stress than the KS-standard glulam would predict. The species classification of KS is required to be further subdivided into sub-species groups based on knot characteristics.

Study on the Bending Test of Glulam Beam Reinforced with GFRP Strips (복합재료로 보강된 집성보의 휨 실험에 대한 연구)

  • Kim, Young-Chan;Davalos, Julio F.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • A recent application of advanced composite materials, primarily fiber-reinforced plastic (FRP) composites, in structures is the reinforcement of conventional structural materials, such as concrete and glued-laminated timber (glulam), to increase their performance. In particular, the construction of large-scale glulam structures usually requires members with large depths and to significantly increase the stiffness and strength of glulam, the members can be reinforced with FRP at top and bottom surfaces. In this paper, glulam beams reinforced with GFRP strip are tested under 2-point bending and results are compared with numerical solution using layer-wise beam theory.

  • PDF

Bending Performance of Glulam Beams Reinforced with Carbon Fiber-Reinforced Plastics Bonded with Polyvinyl Acetate-Based Adhesive (초산비닐수지계 접착제를 사용한 탄소섬유강화플라스틱 복합집성재의 휨 성능)

  • Park, Jun-Chul;Shin, Yoon-Jong;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.364-371
    • /
    • 2009
  • This study was carried out to investigate the bending strength of the Larix glulam beams which were reinforced with CFRP (Carbon fiber reinforced plastic) of which the reinforcement ratios were 0.7% and 2.1% by volume. In the bending test, the rupture shape of the reinforced glulam shows that the reinforced glulam broke firstly in the lowest bottom layer on which tension was loaded, but did not in the upper part reinforced with the CFRP layer. The upper part of the reinforced layer kept strength and did not break when the reinforced glulam broke firstly at the bottom part of the reinforced layer, but broke secondly as loading was increased. In the glulam beams reinforced with CFRP of which the reinforcement ratio was 0.7% by volume, the bending strength of the reinforced beams was increased by 28% at the first break. When beams broke up to the upper part of the reinforced layer, the bending strength of the reinforced beams was increased by 55%, compared to those of control glulam beams. When the glulam beams were reinforced with CFRP of which the reinforcement ratio was 2.1% by volume, the bending strength of the reinforced beams was increased by 77%, compared to those of control glulam beams. The ratio of the height of calculated neutral axis using failure mode recommended by Romani and the height of actual neutral axis using strain gauge was 1.03 and agreed well.

Dimension Stability by Bonding Layers of Glulam (집성재의 접착층수에 따른 치수안정성)

  • Hwang, Kweonhwan;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.88-95
    • /
    • 2008
  • The shrinkage of wood members after construction has been a greater and common concern in wooden buildings with the durability. Particularly, the traditional structure applying solid members actively is easily exposed to the shrinkage that caused by the joints, members, and walls. Moreover, even though domestic larch glulam members are widespread recently in the post-beam construction, the shrinkage (swelling) problem is still the critical defect on the wooden structures by the moisture content change in Korea. Various moisture contents were applied for the specimens to survey the dimensional changes for Japanese larch solid and glulam specimens, and the glulam specimens varied in the number of their laminations. Test results showed that glulam specimens with over 3 bonding layers showed good dimension stabilities. Therefore, to solve the shrinkage problem, sufficient drying fitted to the end-use service conditions should be conducted on the solid or glulam members can be applied.

Performance of Structural Glulam Laminated with CuAz-3 Preservative Treated Lumber (CuAz-3처리 리기다소나무 제재목을 이용한 구조용 집성재 성능 평가)

  • Kim, Kwang-Mo;Eom, Chang-Deuk;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.521-530
    • /
    • 2011
  • Nowadays, market demand of structural Glulam is growing and diversifying. The durability of Glulam should be significantly considered when they are intended to apply for out-door use such as timber bridge and pergola. This study was aimed to develop the manufacturing process of preservative treated structural Glulam using domestic softwood species. 10 m long structural Glulam were manufactured from domestic pitch pine logs with CuAz-3 preservative treatment. At each manufacturing process, the production yield was evaluated. Finally, bending tests were performed to verify the structural performance of manufactured Glulam. From the results, it was shown that the preservative treatment process hardly influenced on the production yield. But domestic pitch pine was proved to not be suitable for making the preservative treated Glulam due to the large difference of preservative permeability between sapwood and heartwood.

Physical-Mechanical Properties of Glued Laminated Timber Made from Tropical Small-Diameter Logs Grown in Indonesia

  • Komariah, Rahma Nur;Hadi, Yusuf Sudo;Massijaya, Muh.Yusram;Suryana, Jajang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.156-167
    • /
    • 2015
  • The aim of this study was to determine the physical and mechanical properties of glued laminated timber (glulam) manufactured from small-diameter logs of three wood species, Acacia mangium (mangium), Maesopsis eminii (manii), and Falcataria moluccana (sengon), with densities of 533, 392, and $271kg/m^3$, respectively. Glulam measuring 5 cm by 7 cm by 160 cm in thickness, width, and length, respectively, was made with three to five lamina, or layers, and isocyanate adhesive. The glulams contained either the same wood species for all layers or a combination of mangium face and back layers with a core layer of manii or sengon. Solid wood samples of the same size for all three species were included as a basis for comparison. Physical-mechanical properties and delamination tests of glulam referred to JAS 234:2003. The results showed that the properties of same species glulam did not differ from those of solid wood, with the exception of the shear strength of glulam being lower than that of solid wood. Wood species affected glulam properties, but three- and five-layer glulams were not different except for the modulus of elasticity. All glulams were resistant to delamination by immersion in both cold and boiling water. The glulams that successfully met the JAS standard were three- and five-layer mangium, five-layer manii, and five-layer mangium-manii glulams.

Development of Pitch Pine Glued Laminated Timber for Structural Use -Improvement of Bending Capacity of Pitch Pine Glulam by Using Domestic Larch Laminars- (리기다소나무의 구조용 집성재 이용기술 개발 -낙엽송 층재와의 혼합 구성을 통한 집성재의 휨성능 향상-)

  • Kim, Kwang-Mo;Shim, Kug-Bo;Park, Joo-Saeng;Kim, Wun-Sub;Lim, Jin-Ah;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.13-22
    • /
    • 2007
  • This study was carried out to scrutinize possibility of manufacturing pitch pine (Pinus rigida) glued laminated timber in order to add values of pitch pine trees. Also, it was investigated to improve bending performance of pitch pine glulam. Pitch pine was imported as one of major plantation species in Korean peninsula. Machine stress rated grades of pitch pine lumber mostly ranged between E7 and E9. which grades were more or less inferior to producing high quality glulam. However, the adhesive properties between pitch pine and pitch pine, and between pitch pine and Japanese larch (Larix kaempferi Carr.), such as shear bond strength, wood failure rate and de-lamination rate of bonded layer submerged in cold and boiling water, were higher than Korean Standard criteria. These properties are essential for manufacturing glulam with single species or multiple species. The modulus of rupture (MOR) of pitch pine glulam exceeded the criterion of Korean Standard for glulam strength grade but modulus of elasticity (MOE) was lower than the criterion. On the other hand, the bending performances (MOR and MOE) were improved 20 percent by mixing with Japanese larch laminar. It is effective to arrange higher quality Japanese larch laminar at the outer layer of glulam for improving bending performances. In conclusion, it is possible to use low quality pitch pine as laminar of structural glulam for adding values of pitch pine.

Physical and Mechanical Properties of Glued Laminated Lumber of Pine (Pinus merkusii) and Jabon (Anthocephalus cadamba)

  • Lestari, Andi Sri Rahayu Diza;Hadi, Yusuf Sudo;Hermawan, Dede;Santoso, Adi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.143-148
    • /
    • 2018
  • The aim of this research was to determine the physical and mechanical properties of glued laminated lumber (glulam) made from jabon (Anthocephalus cadamba) and pine (Pinus merkusii). Three layers of lamina from each wood species were bonded using isocyanate adhesive with a glue spread of $280g{\cdot}m^{-2}$ and then pressed using cold press with a specific pressure of 1.47 MPa. Samples had dimensions of $3cm{\times}6cm{\times}100cm$ (thickness, width, and length, respectively). Glulam properties were tested based on Japanese Agricultural Standard (JAS) 234-2003. The results showed that the density of glulam was $0.36g{\cdot}m^{-3}$ for jabon and $0.73g{\cdot}m^{-3}$ for pine. The moisture content of all glulams fulfilled the JAS standard. The mechanical properties of pine glulam fulfilled the JAS standard in all tests, whereas jabon glulam fulfilled the standard in the modulus of rupture and shear tests.

Evaluation of the Strength Properties of Glulam Connections with Inserted Steel Plates and Drift Pins

  • Kim, Ho-Ki;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.29-38
    • /
    • 2008
  • It is well-known that the strength properties of wood connections depend on the density of the wood members, the diameter of the fasteners, the number of fasteners, and the arrangement of the fasteners, etc. In this study, the connection with inserted steel plates and drift pins was made in different configurations. The specimens were Larch and Sugi glulam connections. The specimens were loaded in tension, and the yield loads of the connections were obtained. The values obtained from the tests were compared with the predicted values. Good agreement between the yield loads obtained from the tension failure tests and the predicted yield loads were shown. It was shown that the density of the wood member barely affected the strength properties of the connections. The strength decreases of the Sugi glulam connections by the group effect were less than those of the Larch glulam connections.