• Title/Summary/Keyword: glucose utilization

Search Result 360, Processing Time 0.029 seconds

A Comparative Study on the Energy Metabolism of Brains of Several Vertebtrates with Respect to Their Phyogeny (척추동물 뇌조직의 Energy 대사에 관한 계통학적 비교연구)

  • 박상윤
    • The Korean Journal of Zoology
    • /
    • v.7 no.2
    • /
    • pp.25-36
    • /
    • 1964
  • The present paper deals with the comparative study on phylogenic difference in the patterns of energy metabolism of brain slices of several vertebrate species by measuring oxygen consumptionwith glucose-6-phosphate, glucose-1-phosphate, glyceraldehyde-3-phosphate or glutamate as respiratory substrate employing Warburg's manometric method, by determination of the utilization rate of glucose using glucose-1-C14 by analyzing patterns of free amino acid distribution , and by histochemical determination using glucose-1-C14 by analyzing patterns of free amino acid distribution acid distribution , and by histochemical determination of glycogen contents. 1. Glucose enhances the oxygen consumption of brain slices of animals belinging to reptile, aves and mammalia while it shows a tendency to decrease that of animals belonging to pisces and amphibia. 2. Glucose-6--phosphate increase oxygen consumption more than glucose in every species examined, while glucose-1-phosphate and glyceraldehyde-3-phosphate increase that of Rana nigromaculata only . In general m, it appears that phosphosugars are more effective as a respiratory substrate to those species which have less endogenous respiration than to those having larger endogenous respiration. 3. Similar patterns of free amino acid distribution and the relative amount are found among the species and in every species examined glutamic acid is detected in the larges amount . ${\gamma}$-Amino butyric acid, glycine, alanine and aspartic acid are found in every species. 4. Ophicephalus showed less oxygen consumption than endogenous respiration when glutamate was added to the medium. When sodium fluoride was added, the oxygen consumption was some what increased . Such phenomenon wasnot found in the frog. 5. The result of histochemcial analysis of the brain showed that glycogen was abundantly present in the fish , amphibia , and especially in the reptile and that no distinctive grains of glycogen were found in the bird and mammal . From these facts, it may be supposed that anaerobic glycolysis as energy source dominates in fish and amphibia and aerobic respiration through the oxidation of glucose dominates in bird and mamal , the reptile occupying transitional position between these two categories. The way of obtaining energy for brain activity by the oxidation of glucose supplied from the circulating blood is seemed to be first acquired by reptile and the function is completed both in aves and mammal.

  • PDF

Inhibition of Sarcoplasmic Reticulum $Ca^{2+}$ Uptake by Pyruvate and Fatty Acid in H9c2 Cardiomyocytes: Implications for Diabetic Cardiomyopathy

  • Lee, Eun-Hee;Lee, Hye-Kyung;Kim, Hae-Won;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.195-201
    • /
    • 2005
  • High extracellular glucose concentration was reported to suppress intracellular $Ca^{2+}$ clearing through altered sarcoplasmic reticulum (SR) function. In the present study, we attempted to elucidate the effects of pyruvate and fatty acid on SR function and reveal the mechanistic link with glucose-induced SR dysfunction. For this purpose, SR $Ca^{2+}$-uptake rate was measured in digitonin-permeabilized H9c2 cardiomyocytes cultured in various conditions. Exposure of these cells to 5 mM pyruvate for 2 days induced a significant suppression of SR $Ca^{2+}$-uptake, which was comparable to the effects of high glucose. These effects were accompanied with decreased glucose utilization. However, pyruvate could not further suppress SR $Ca^{2+}$-uptake in cells cultured in high glucose condition. Enhanced entry of pyruvate into mitochondria by dichloroacetate, an activator of pyruvate dehydrogenase complex, also induced suppression of SR $Ca^{2+}$-uptake, indicating that mitochondrial uptake of pyruvate is required in the SR dysfunction induced by pyruvate or glucose. On the other hand, augmentation of fatty acid supply by adding 0.2 to 0.8 mM oleic acid resulted in a dose-dependent suppression of SR $Ca^{2+}$-uptake. However, these effects were attenuated in high glucose-cultured cells, with no significant changes by oleic acid concentrations lower than 0.4 mM. These results demonstrate that (1) increased pyruvate oxidation is the key mechanism in the SR dysfunction observed in high glucose-cultured cardiomyocytes; (2) exogenous fatty acid also suppresses SR $Ca^{2+}$-uptake, presumably through a mechanism shared by glucose.

The Effect of Spent Medium Recycle on Cell Proliferation, Metabolism and Baculovirus Production by the Lepidopteran Se301 Cell Line Infected at Very Low MOI

  • Beas-Catena, Alba;Sanchez-Miron, Asterio;Garcia-Camacho, Francisco;Contreras-Gomez, Antonio;Molina-Grima, Emilio
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1747-1756
    • /
    • 2013
  • The aim of this paper was to study the effect of spent medium recycle on Spodoptera exigua Se301 cell line proliferation, metabolism, and baculovirus production when grown in batch suspension cultures in Ex-Cell 420 serum-free medium. The results showed that the recycle of 20% of spent medium from a culture in mid-exponential growth phase improved growth relative to a control culture grown in fresh medium. Although both glucose and glutamine were still present at the end of the growth phase, glutamate was always completely exhausted. The pattern of the specific glucose and lactate consumption and production rates, as well as the specific glutamine and glutamate consumption rates, suggests a metabolic shift at spent medium recycle values of over 60%, with a decrease in the efficiency of glucose utilization and an increase in glutamate consumption to fuel energy metabolism. Baculovirus infection provoked a change in the metabolic pattern of Se301 cells, although a beneficial effect of spent medium recycle was also observed. Both growth rate and maximum viable cell density decreased relative to uninfected cultures. The efficiency of glucose utilization was dramatically reduced in those cultures containing the lowest percentages of spent medium, whereas glutamine and glutamate consumption was modulated, thereby suggesting that infected cells were devoted to virus replication, retaining their ability to incorporate the nutrients required to support viral replication. Recycle of 20% of spent medium increased baculovirus production by around 90%, thus showing the link between cell growth and baculovirus production.

Heteroexpression and Functional Characterization of Glucose 6-Phosphate Dehydrogenase from Industrial Aspergillus oryzae

  • Guo, Hongwei;Han, Jinyao;Wu, Jingjing;Chen, Hongwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.577-586
    • /
    • 2019
  • The engineered Aspergillus oryzae has a high NADPH demand for xylose utilization and overproduction of target metabolites. Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) is one of two key enzymes in the oxidative part of the pentose phosphate pathway, and is also the main enzyme involved in NADPH regeneration. The open reading frame and cDNA of the putative A. oryzae G6PDH (AoG6PDH) were obtained, followed by heterogeneous expression in Escherichia coli and purification as a his6-tagged protein. The purified protein was characterized to be in possession of G6PDH activity with a molecular mass of 118.0 kDa. The enzyme displayed maximal activity at pH 7.5 and the optimal temperature was $50^{\circ}C$. This enzyme also had a half-life of 33.3 min at $40^{\circ}C$. Kinetics assay showed that AoG6PDH was strictly dependent on $NADP^+$ ($K_m=6.3{\mu}M$, $k_{cat}=1000.0s^{-1}$, $k_{cat}/K_m=158.7s^{-1}{\cdot}{\mu}M^{-1}$) as cofactor. The $K_m$ and $k_{cat}/K_m$ values of glucose-6-phosphate were $109.7s^{-1}{\cdot}{\mu}M^{-1}$ and $9.1s^{-1}{\cdot}{\mu}M^{-1}$ respectively. Initial velocity and product inhibition analyses indicated the catalytic reaction followed a two-substrate, steady-state, ordered BiBi mechanism, where $NADP^+$ was the first substrate bound to the enzyme and NADPH was the second product released from the catalytic complex. The established kinetic model could be applied in further regulation of the pentose phosphate pathway and NADPH regeneration of A. oryzae to improve its xylose utilization and yields of valued metabolites.

Substrate Effects on Biological Excess Phosphorus Removal (유기물질이 인제거 특성에 미치는 영향)

  • Jun, Hang-Bae;Lee, Eyung-Taek;Shin, Hang-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.2
    • /
    • pp.25-34
    • /
    • 1994
  • In this research, investigations were made on the effect of type and load of organic substrate on phosphorus release. Reactors of three different sizes were operated, being fed on five kinds of organic substrates. The quantitative analyses were made on phosphorus release and substrate utilization under anaerobic condition. The molar ratios of the uptaken organic substrate to the released phosphorus were 0.5 with acetate, 0.6 with glucose, 0.8 with glucose/acetate, and 1.2 with glucose/acids, respectively. The phosphorus release was inhibited at the higher organic load than the normal at stead state. Both acetate and acids/glucose enhanced phosphorus release- as well as uptake-rate, however, the complete phosphorus removal was achieved after the microbial adaptation to the new environment. In case with acetate, operation was hampered by the poor sludge settleability and phosphorus uptake was not enough although the phosphorus release was active. But with milk/starch, the phosphorus release and uptake was well developed even though phosphorus release was not comparatively high. From this study, it was concluded that organic substrates, such as glucose seemed to be converted fatty acids after fast bio-sorption, followed by concurrent uptake of these acids by excess phosphorus removing bacteria.

  • PDF

Anti-Cariogenicity of 2-Hydroxyethyl ${\beta}$-Undecenate from Cumin (Cuminum cymium L.) Seed

  • Ryu, Il-Hwan;Kang, Enn-Ju;Lee, Kap-Sang
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.516-522
    • /
    • 2006
  • This study was to assess the antimicrobial action of 2-hydroxyethyl ${\beta}$-undecenate purified from cumin (Cuminum cymium L.) seed against the oral anaerobe, Streptococcus mutans, which is associated with gingivitis, specifically focusing on the catabolic effect. 2-Hydroxyethyl ${\beta}$-undecenate inhibited the acid production and growth of S. mutans after 30 hr incubation at 50 mM. The glycolysis of S. mutans with glucose as substrate was similarly sensitive to 2-hydroxyethyl ${\beta}$-undecenate, with 70% inhibition of glucose utilization at 5 mM and 90% inhibition at 50 mM. In addition, this substance potently inhibited the glycolysis enzyme, glyceraldehyde-3-phosphate dehydrogenase (GADP); the phosphoenolpyruvate, glucose phosphotransferase (Glucose-PTS); and membrane ATPase, in a concentration dependent manner. The $IC_{50}$ values for inhibition of GADP, Glucose-PTS, and ATPase were 1, 0.9, and 5 mM, respectively. Furthermore, 2-hydroxyethyl ${\beta}$-undecenate inhibited teeth calcium ion elution by 80% at 50 mM. These results suggest that 2-hydroxyethyl ${\beta}$-undecenate is a potent inhibitor of carbohydrate metabolism and the growth of S. mutans JC-2.

The Effects of Metabolic Substrates on Contractility of Isolated Rat Atria Depressed with Bupivacaine (Bupivacaine에 의해 억제된 심근수축력에 대한 대사기질의 영향)

  • Park, Seung-Joon;Chang, Joo-Ho;Jung, Jee-Chang;Ko, Kye-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • A concentration of 0.01 mM bupivacaine was necessary to maintain approximately 50% depression of contractility of rat atria suspended in a modified Krebs-Ringer bicarbonate glucose medium, pH 7.4 at $30^{\circ}C$. Sodium pyruvate, sodium acetate, and fructose partially restored the contractility of the bupivacaine-depressed atria. However, 20 mM glucose had no effect on the bupivacaine-depressed atria, although this concentration of glucose markedly increased the contractility of normal atria not to be exposed to bupivacaine. Contractility of normal atria was not significantly influenced by sodium pyruvate, sodium acetate, and fructose. The results suggested that at least part of the negative inotropic action of bupivacaine is the result of inhibition of glucose uptake or utilization in the glycolytic pathway, and further pinpoint the blockade as an early step in the glycolytic sequence prior to the phosphofructokinase step.

  • PDF

Preparation of Silicon-Carbon-Graphene Composites and their Application to Lithium Ion Secondary Battery (실리콘-탄소-그래핀 복합체 제조 및 리튬이온 이차전지 응용)

  • Kim, SunKyung;Kim, ChanMi;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.127-137
    • /
    • 2019
  • Recently, high electrochemical performance anode materials for lithium ion secondary batteries are of interest. Here, we present silicon-carbon-graphene (Si-C-GR) composites for high performance anode materials of lithium ion secondary battery (LIB). Aerosol process and heat-treatment were employed to prepare the Si-C-GR composites using a colloidal mixture of silicon, glucose, and graphene oxide precursor. The effects of the size of the silicon particles in Si-C-GR composites on the material properties including the morphology and crystal structure were investigated. Silicon particles ranged from 50 nm to 1 ㎛ in average diameter were employed while concentration of silicon, graphene oxide and glucose was fixed in the aerosol precursor. Morphology of as-fabricated Si-C-GR composites was generally the shape of a crumpled paper ball and the Si particles were well wrapped in carbon and graphene. The size range of composites was about from 2.2 to 2.9 ㎛. The composites including silicon particles larger than 200 nm in size exhibited higher performance as LIB anodes such as capacity and coulombic efficiency than silicon particles less than 100 nm, which were about 1500 mAh/g at 100 cycles in capacity and 99% in coulombic efficiency, respectively.

Novel Bombesin Analogues Conjugated with DOTA-Ala(SO3H)-4 aminobenzoic acid and DOTA-Lys(glucose)-4 aminobenzoic acid: Synthesis, Radiolabeling, and Gastrin Releasing Peptide Receptor Binding Affinity

  • Lim, Jae Cheong;Choi, Sang Mu;Cho, Eun Ha;Kim, Jin Joo
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.191-200
    • /
    • 2013
  • In this study, a novel bombesin (BBN) analogues, DOTA-Ala($SO_3H$)-4 aminobenzoyl-Gln-Trp-Ala-Val-Gly-His-Leu-Met-$NH_2$ (DOTA-sBBN) and DOTA-Lys(glucose)-4 aminobenzoyl-Gln-Trp-Ala-Val-Gly-His-Leu-Met-$NH_2$ (DOTA-gluBBN), were synthesized and radiolabeled, and their binding affinities were evaluated. Peptides were prepared by a solid phase synthesis method and their purities were over 98%. DOTA is the chelating agent for $^{177}Lu$-labeling, and the DOTA-conjugated peptides were radiolabeled with $^{177}Lu$ by a high radiolabeling yield (>98%). The Log P values of DOTA-sBBN and DOTA-gluBBN were -2.20 and -2.79, respectively. 50.41% of $^{177}Lu$-DOTA-sBBN and 72.97% of $^{177}Lu$-DOTA-gluBBN were left undegraded by the serum incubation at $37^{\circ}C$ for 48 hr. A competitive displacement of $^{125}I-[Tyr^4]$-BBN on the PC-3 human prostate carcinoma cells revealed that 50% inhibitory concentration ($IC_{50}$) were 1.46 nM of DOTA-sBBN and 4.67 nM of DOTA-gluBBN indicating a highly nanomolar binding affinity for GRPR. Therefore, it is concluded that $^{177}Lu$-DOTA-sBBN and $^{177}Lu$-DOTA-gluBBN can be potential candidates as a targeting modality for the Gastrin-releasing peptide receptor (GRPR)-over-expressing tumors, and further studies to evaluate their biological and pharmacological characteristics are needed.

Effect of Nitrogen Source on the Growth of Azotobacter vinelandii UWD and Production of Biodegradable Plastics in the Mixture of Organic Acids and Glucose (유기산 및 포도당 혼합배지에서 Azotobacter vinelandii UWD의 생장 및 생분해성 고분자 생산에 대한 질소원의 영향)

  • 박창호
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.626-630
    • /
    • 1998
  • Ammonium limitation did not promote ply(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production of Azotobacter vinelandii UWD. In acid phase, ammonium limitation during utilization of propionic acid and butyric acid led to 35% decrease in product yield. In glucose phase, both biomass yield and polymer yield decreased about 22% under ammonium limitation. However, in nitrogen-fixing culture glucose was consumed 25% faster and the final PHBV wt% decreased slightly. Under nitrogen limitation a portion of the carbon sources was used fro nitrogen fixation rather than biomass and polymer formation, resulting in a decrease in biomass yield and polymer yield.

  • PDF