• Title/Summary/Keyword: glucose homeostasis

Search Result 183, Processing Time 0.039 seconds

Association Between Trp64arg Polymorphism of the β3 adrenoreceptor Gene and Female Sex in Obese Turkish Children and Adolescents

  • Yilmaz, Resul;Ates, Omer;Gul, Ali;Kasap, Tuba;Ozer, Samet;Ensari, Emel
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.5
    • /
    • pp.460-469
    • /
    • 2019
  • Purpose: The ${\beta}3-adrenergic$ receptor (ADRB3) is expressed in visceral adipose tissue and has been speculated to contribute to lipolysis, energy metabolism, and regulation of the metabolic rate. In this study, we aimed to investigate the association of polymorphism of the ADRB3 gene with the sex of children with obesity and related pathologies. Methods: ADRB3 gene trp64arg genotyping was conducted in 441 children aged 6-18 years. Among these subjects, 264 were obese (103 boys; 161 girls) and 179 were of normal weight (81 boys; 98 girls). In the obese group, fasting lipids, glucose and insulin levels, and blood pressure were measured. Metabolic syndrome (MS) was defined according to the modified World Health Organization criteria adapted for children. Results: The frequency of trp64arg genotype was similar in obese and normal weight children. In obese children, serum lipid, glucose, and insulin levels; homeostasis model assessment of insulin resistance (HOMA-IR) scores; and MS were not different between arg allele carriers (trp64arg) and noncarriers (trp64trp). In 264 obese children, genetic analysis results revealed that the arg allele carriers were significantly higher in girls than in boys (p=0.001). In the normal weight group, no statistically significant difference was found between genotypes of boys and girls (p=0.771). Conclusion: Trp64arg polymorphism of the ADRB3 gene was not associated with obesity and MS in Turkish children and adolescents. Although no relationships were observed between the genotypes and lipids, glucose/insulin levels, or HOMA-IR, the presence of trp64arg variant was frequent in obese girls, which can lead to weight gain as well as difficulty in losing weight in women.

Rice-based breakfast improves fasting glucose and HOMA-IR in Korean adolescents who skip breakfast, but breakfast skipping increases aromatic amino acids associated with diabetes prediction in Korean adolescents who skip breakfast: a randomized, parallel-group, controlled trial

  • Kim, Hyun Suk;Jung, Su-Jin;Jang, Soyoung;Kim, Min Jung;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.4
    • /
    • pp.450-463
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Adolescents who skip breakfast have an increased prevalence of chronic diseases. Thus, we aimed to evaluate whether the intake of rice-based breakfast had positive effects on blood glucose indices and to determine the possibility of diabetes prevalence in Korean youths who habitually skip breakfast. SUBJECTS/METHODS: In this randomized parallel-group controlled trial, 81 subjects who were suitable for compliance among 105 middle-and high-school students aged 12-18 years who usually skipped breakfast were included in this study (rice-meal group [RMG], n = 26; wheat-meal group [WMG], n = 29; general-meal group [GMG], n = 26). The RMG and WMG received a rice-based breakfast and a wheat-based breakfast for 12 weeks, respectively. The anthropometric indices, blood glucose indices, and metabolites were measured at baseline and the endpoint, respectively. RESULTS: The mean body weights in the RMG, WMG, and GMG groups at the endpoint were 62.44 kg, 61.80 kg, and 60.28 kg, respectively, and the mean body weights of the WMG and GMG groups at the endpoint were significantly higher than that at baseline (P < 0.05). The levels of fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) values were significantly decreased in the RMG group at the endpoint compared to baseline (P < 0.05, P < 0.05, respectively). The levels of tryptophan and tyrosine in the WMG group at the endpoint were significantly higher than that those at baseline (P < 0.01, P < 0.05, respectively). CONCLUSIONS: Rice-based breakfast has positive effects on fasting insulin levels and HOMA-IR in Korean adolescents who skip breakfast. Additionally, it was found that a skipping breakfast could increase the prevalence of diabetes in adolescents who skip breakfast. Therefore, in addition to reducing breakfast skipping, it is vital to develop a rice-based menu that fits teenage preferences to prevent chronic diseases such as diabetes.

The Centrifugal Influence on Gustatory Neurons in the Nucleus of the Solitary Tract

  • Cho, Young Kyung
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.161-166
    • /
    • 2015
  • Neuronal activities of taste-responsive cells in the nucleus of the solitary tract (NST) are affected by various physiological factors, such as blood glucose level or sodium imbalance. These phenomena suggest that NST taste neurons are under the influence of neural substrates that regulate nutritional homeostasis. In this study, we reviewed a series of in vivo electrophysiological investigations that demonstrate that forebrain nuclei, such as the lateral hypothalamus or central nucleus of the amygdala, send descending projections and modulate neuronal activity of gustatory neurons in the NST. These centrifugal modulations may mediate plasticity of taste response in the NST under different physiological conditions.

Altered Sarcoplasmic Reticulum $Ca^{2+}$ Uptake of H9c2 Cells Cultured in High Glucose Medium

  • Lee, Eun-Hee;Seo, Young-Joo;Lee, Jun-Whee;Jang, Joong-Sik;Kim, Young-Hoon;Kim, Hae-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.40-40
    • /
    • 2002
  • Altered intracellular $Ca^{2+}$ homeostasis is presumably the primary mechanism of the diastolic impairment in diabetic cardiomyopathy. However, causal relations of numerous environmental changes observed in the diabetic heart have been left unresolved. In the present study, we sought to establish an in vitro model of diabetic cardiomyopathy using H9c2 cardiac myocyte cell line.(omitted)

  • PDF

Homology Modelling of Chemerin like Receptor-1 (CMKLR1): Potential Target for Treating Type II Diabetes

  • B, Sathya.
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.20-26
    • /
    • 2017
  • Chemerin receptor, which predominantly expressed in immune cells as well as adipose tissue, was found to stimulate chemotaxis of dendritic cells and macrophages to the site of inflammation. Chemerin is a widely distributed multifunctional secreted protein implicated in immune cell migration, adipogenesis, osteoblastogenesis, angiogenesis, myogenesis, and glucose homeostasis. Recent studies suggest chemerin may play an important role in the pathogenesis of obesity and insulin resistance and it becomes a potential therapeutic target for treating type II diabetes. The crystal structure of chemerin receptor has not yet been resolved. Therefore, in the present study, homology modelling of CMKLR1 was done utilizing the crystal structure of human angiotension receptor in complex with inverse agonist olmesartan as the template. Since the template has low sequence identity, we have incorporated both threading and comparative modelling approach to generate the three dimensional structure. 3D models were generated and validated. The reported models can be used to characterize the critical amino acid residues in the binding site of CMKLR1.

Genetical Approach to the Study of Diabetes : Transgenic Mice Model (당뇨병연구를 위한 유전학적 접근 : 형질전환 마우스 모델)

  • 김양하
    • Food Industry And Nutrition
    • /
    • v.4 no.3
    • /
    • pp.83-87
    • /
    • 1999
  • Non-insulin-dependent diabetes mellitus (NIDDM) is characterized by insulin resistance and impaired insulim secretion. The transgenic technology, in which a specific gene can be introduced or deleted to study its function, has been established. A number of transgenic mice, altered the expression of genes potentially involved in insulin action or pancreatic ${\beta}$-cell function, have recently been developed to address questions concerning NIDDM. Thransgenic mice model may help understanding the molecular basis of complex patho-physiologies of NIDDM. This review outlines the new insights obtained from the studies of transgenic mice that overxpress or show decreased expression of putative key genes involved in the regulation of insulin resistance and pancreatic ${\beta}$-cell function, therefore in the control of glucose homeostasis.

  • PDF

Transient Receptor Potential Channels and Metabolism

  • Dhakal, Subash;Lee, Youngseok
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.569-578
    • /
    • 2019
  • Transient receptor potential (TRP) channels are nonselective cationic channels, conserved among flies to humans. Most TRP channels have well known functions in chemosensation, thermosensation, and mechanosensation. In addition to being sensing environmental changes, many TRP channels are also internal sensors that help maintain homeostasis. Recent improvements to analytical methods for genomics and metabolomics allow us to investigate these channels in both mutant animals and humans. In this review, we discuss three aspects of TRP channels, which are their role in metabolism, their functional characteristics, and their role in metabolic syndrome. First, we introduce each TRP channel superfamily and their particular roles in metabolism. Second, we provide evidence for which metabolites TRP channels affect, such as lipids or glucose. Third, we discuss correlations between TRP channels and obesity, diabetes, and mucolipidosis. The cellular metabolism of TRP channels gives us possible therapeutic approaches for an effective prophylaxis of metabolic syndromes.

Study of Glycyrrhizic Acid:menthol Supramolecular Complexes on Mitochondrial Functional Activity in in-vitro Experiments

  • L. A. Еttibaeva;U. K. Abdurakhmanova;A. D. Matchanov
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.99-105
    • /
    • 2023
  • Here we present how a supramolecular complex of Glycyrrhizic acid (GA) with Menthol (Mt) affects the blood glucose levels and glycogen synthesis in the liver of rats in in-vivo experiments with diabetes caused by alloxan. We have shown that Menthol, Glycyrrhizic acid and GA:Mt supramolecular complexes can restore functional dysfunction of the liver mitochondria in alloxan diabetes, i.e., inhibit lipid peroxidation. The hypoglycemic activity and mitochondrial membrane stabilizing properties of the supramolecular complex GA:Mt (4:1) in alloxan diabetes were more pronounced than those of menthol, GA and its GA:Mt (2:1) and GA: Mt (9:1) supramolecular complexes.

Changes of Insulin-like Growth factor-I, II and IGF-Binding Protein-3 on Fasting and Postprandial state in Diabetes (당뇨환자의 식사 전후에 따른 혈중 Insulin-like growth factor(IGF-I), IGF-II 및 Insulin-like growth factor binding proteins(IGFBP)-3의 변화)

  • Heo, Young-Ran;Kang, Chang-Won;Cha, Youn-Soo
    • Korean Journal of Human Ecology
    • /
    • v.9 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • IGFs and IGFBPs have an important role in controlling glucose homeostasis. This study was conducted to investigate the changes of insulin-like growth factor(IGF)-I. IGF-II and IGF binding proteins (IGFBPs) on fasting and postprandial state in Korean diabetes, Twenty eight healthy subjects and fifty seven diabetic patients participated in this study. The healthy subjects were not knowingly suffered from any disease and were not receiving any medical treatment, and diabetic subjects were undergo medical treatment, continuously. Weight and height were measured and body mass index (BMI) was calculated as weight (kg) divided by the square of height (m2). Blood pressure was measured. Plasma lipid profiles were analyzed by enzymatic methods, plasma Insulin and glucose levels were measured in fasting and postprandial state, respectively. The levels of serum IGFs and IGFBP-3 were measured by radioimmunoassay (RIA). The levels of glucose and insulin were significantly higher in diabetes than normal subjects on fasting as well as postprandial state (p<0.0l). The levels of IGF-I was significantly lower in diabetes than normal subjects, however in postprandial state, there was no significant difference between diabetes and control subjects, The levels of IGF-II were significantly lower in diabetes than control subjects both fasting and postpradial state, The level of IGFBP-3 were not significantly different between diabetes and normal subjects. Fasting IGF-I, IGF-II and IGFBP-3 levels were positively correlated with those levels on postprandial state, fasting IGe levels of IGF-I levels were positively correlated with fasting insulin levels, and postprandial IGF-I levels were positively correlated with fasting glucose, postprandial insulin and postprandial insulin levels, plasma triglyceride levels were correlated with plasma triglyceride levels. The IGFBP-3 levels were not correlated with IGF components, glucose, insulin and plasma lipids, These results demonstrate that in diabetes, the components IGF-I/IGFBPs system were significantly correlated with plsma glucose and insulin levels both fasting and postprandial state.

  • PDF

Expressional Analysis of Two Genes (Scd1 and Idi1) Down-regulated by Starvation Stress (영양고갈-스트레스에 의해서 하강발현하는 유전자(Scd1과 Idi1)의 분석)

  • Cho, Junho;Kwon, Young-Sook;Kim, Dong-Il;Kim, Bok Jo;Kwon, Kisang
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.762-768
    • /
    • 2014
  • Diet exerts a major stress on the body and may affect gene expression and physiological functions. Understanding of cellular responses during starvation is necessary in developing strategies to reduce damage caused by diet. In this study, we isolated 10 genes (Comt, RGN, Scd1, Temt, Idi1, Fabp5, Car3, Cyp2c70, Pinx1, and Poldip3) that are down-regulated in starvation and are closely related to liver metabolism. Water supply during starvation had no effect on the induction of apoptosis, autophagy, and ERQC. The genes down-regulated by starvation were associated with many related pathways rather than limited to the liver homeostasis pathway. Water supply during starvation is important. However, maintaining NaCl homeostasis is more important. The results are thought to be closely related to gender-specific metabolism in starvation and NaCl.