Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0007

Transient Receptor Potential Channels and Metabolism  

Dhakal, Subash (Department of Bio and Fermentation Convergence Technology, Kookmin University)
Lee, Youngseok (Department of Bio and Fermentation Convergence Technology, Kookmin University)
Abstract
Transient receptor potential (TRP) channels are nonselective cationic channels, conserved among flies to humans. Most TRP channels have well known functions in chemosensation, thermosensation, and mechanosensation. In addition to being sensing environmental changes, many TRP channels are also internal sensors that help maintain homeostasis. Recent improvements to analytical methods for genomics and metabolomics allow us to investigate these channels in both mutant animals and humans. In this review, we discuss three aspects of TRP channels, which are their role in metabolism, their functional characteristics, and their role in metabolic syndrome. First, we introduce each TRP channel superfamily and their particular roles in metabolism. Second, we provide evidence for which metabolites TRP channels affect, such as lipids or glucose. Third, we discuss correlations between TRP channels and obesity, diabetes, and mucolipidosis. The cellular metabolism of TRP channels gives us possible therapeutic approaches for an effective prophylaxis of metabolic syndromes.
Keywords
metabolic diseases; metabolism; transient receptor potential channel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, P., Shah, B.P., Croasdell, S., and Gilbertson, T.A. (2011). Transient receptor potential channel type M5 is essential for fat taste. J. Neurosci. 31, 8634-8642.   DOI
2 Lyall, V., Heck, G.L., Vinnikova, A.K., Ghosh, S., Phan, T.H.T., Alam, R.I., Russell, O.F., Malik, S.A., Bigbee, J.W., and DeSimone, J.A. (2004). The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol. 558, 147-159.   DOI
3 Macpherson, L.J., Dubin, A.E., Evans, M.J., Marr, F., Schultz, P.G., Cravatt, B.F., and Patapoutian, A. (2007). Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541-545.   DOI
4 Marshall, N.J., Liang, L., Bodkin, J., Dessapt-Baradez, C., Nandi, M., Collot-Teixeira, S., Smillie, S.J., Lalgi, K., Fernandes, E.S., and Gnudi, L. (2012). A role for TRPV1 in influencing the onset of cardiovascular disease in obesity. Hypertension 61, 246-252.   DOI
5 Masuda, Y., Haramizu, S., Oki, K., Ohnuki, K., Watanabe, T., Yazawa, S., Kawada, T., Hashizume, S., and Fushiki, T. (2003). Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. J. Appl. Physiol. 95, 2408-2415.   DOI
6 Matsuura, H., Sokabe, T., Kohno, K., Tominaga, M., and Kadowaki, T. (2009). Evolutionary conservation and changes in insect TRP channels. BMC Evol. Biol. 9, 228.   DOI
7 Monet, M., Gkika, D., Lehen'kyi, V., Pourtier, A., Abeele, F.V., Bidaux, G., Juvin, V., Rassendren, F., Humez, S., and Prevarsakaya, N. (2009). Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim. Biophys. Acta 1793, 528-539.   DOI
8 Moqrich, A., Hwang, S.W., Earley, T.J., Petrus, M.J., Murray, A.N., Spencer, K.S., Andahazy, M., Story, G.M., and Patapoutian, A. (2005). Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468-1472.   DOI
9 Montell, C. (2005). The TRP superfamily of cation channels. Sci. STKE 2005, re3.
10 Montell, C. and Rubin, G.M. (1989). Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313-1323.   DOI
11 Moran, M.M., McAlexander, M.A., Biro, T., and Szallasi, A. (2011). Transient receptor potential channels as therapeutic targets. Nat. Rev. Drug Discov. 10, 601.   DOI
12 Ahn, J., Lee, H., Im, S.W., Jung, C.H., and Ha, T.Y. (2014). Allyl isothiocyanate ameliorates insulin resistance through the regulation of mitochondrial function. J. Nutr. Biochem. 25, 1026-1034.   DOI
13 Baboota, R.K., Singh, D.P., Sarma, S.M., Kaur, J., Sandhir, R., Boparai, R.K., Kondepudi, K.K., and Bishnoi, M. (2014). Capsaicin induces "brite" phenotype in differentiating 3T3-L1 preadipocytes. PLoS One 9, e103093.   DOI
14 Bang, S., Yoo, S., Yang, T.J., Cho, H., and Hwang, S.W. (2010). Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J. Biol. Chem. 285, 19362-19371.   DOI
15 Berthier, L. (2004). Time and length scales in supercooled liquids. Phys. Rev. E 69, 020201.   DOI
16 Bang, S., Yoo, S., Yang, T.J., Cho, H., and Hwang, S.W. (2011). Isopentenyl pyrophosphate is a novel antinociceptive substance that inhibits TRPV3 and TRPA1 ion channels. Pain 152, 1156-1164.   DOI
17 Bang, S., Yoo, S., Yang, T.J., Cho, H., and Hwang, S.W. (2012). Nociceptive and pro-inflammatory effects of dimethylallyl pyrophosphate via TRPV4 activation. Br. J. Pharmacol. 166, 1433-1443.   DOI
18 Bergdahl, A., Gomez, M.F., Dreja, K., Xu, S.Z., Adner, M., Beech, D.J., Broman, J., Hellstrand, P., and Sward, K. (2003). Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated $Ca^{2+}$ entry dependent on TRPC1. Circ. Res. 93, 839-847.   DOI
19 Morita, H., Honda, A., Inoue, R., Ito, Y., Abe, K., Nelson, M.T., and Brayden, J.E. (2007). Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J. Pharmacol. 103, 417-426.
20 Motter, A.L. and Ahern, G.P. (2008). TRPV1-null mice are protected from diet-induced obesity. FEBS Lett. 582, 2257-2262.   DOI
21 Nijenhuis, T., Hoenderop, J.G., and Bindels, R.J. (2005). TRPV5 and TRPV6 in $Ca^{2+}$ (re)absorption: regulating $Ca^{2+}$ entry at the gate. Pflugers Arch. 451, 181-192.   DOI
22 Nilius, B. and Owsianik, G. (2011). The transient receptor potential family of ion channels. Genome Biol. 12, 218.   DOI
23 Nilius, B., Owsianik, G., Voets, T., and Peters, J.A. (2007). Transient receptor potential cation channels in disease. Physiol. Rev. 87, 165-217.   DOI
24 Brownstein, M. (1977). Neurotransmitters and hypothalamic hormones in the central nervous system. Fed. Proc. 36, 1960-1963.
25 Bessac, B.F. and Jordt, S.E. (2008). Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology 23, 360-370.   DOI
26 Nilius, B. and Szallasi, A. (2014). Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol. Rev. 66, 676-814.   DOI
27 Nozawa, K., Kawabata-Shoda, E., Doihara, H., Kojima, R., Okada, H., Mochizuki, S., Sano, Y., Inamura, K., Matsushime, H., and Koizumi, T. (2009). TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc. Natl. Acad. Sci. 106, 3408-3413.   DOI
28 Palmer, R.K., Atwal, K., Bakaj, I., Carlucci-Derbyshire, S., Buber, M.T., Cerne, R., Cortés, R.Y., Devantier, H.R., Jorgensen, V., and Pawlyk, A. (2010). Triphenylphosphine oxide is a potent and selective inhibitor of the transient receptor potential melastatin-5 ion channel. Assay Drug Dev. Technol. 8, 703-713.   DOI
29 Palmer, R.K. and Lunn, C.A. (2013). TRP channels as targets for therapeutic intervention in obesity: focus on TRPV1 and TRPM5. Curr. Top. Med. Chem. 13, 247-257.   DOI
30 Bottari, S.P., de Gasparo, M., Steckelings, U.M., and Levens, N.R. (1993). Angiotensin II receptor subtypes: characterization, signalling mechanisms, and possible physiological implications. Front. Neuroendocrinol. 14, 123-171.   DOI
31 Cettour-Rose, P., Bezencon, C., Darimont, C., le Coutre, J., and Damak, S. (2013). Quinine controls body weight gain without affecting food intake in male C57BL6 mice. BMC Physiol. 13, 5.   DOI
32 Cheng, W., Yang, F., Takanishi, C.L., and Zheng, J. (2007). Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J. Gen. Physiol. 129, 191-207.   DOI
33 Cheung, S.Y., Huang, Y., Kwan, H.Y., Chung, H.Y., and Yao, X. (2015). Activation of transient receptor potential vanilloid 3 channel suppresses adipogenesis. Endocrinology 156, 2074-2086.   DOI
34 Chu, C.J., Huang, S.M., De Petrocellis, L., Bisogno, T., Ewing, S.A., Miller, J.D., Zipkin, R.E., Daddario, N., Appendino, G., and Di Marzo, V. (2003). N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem. 278, 13633-13639.   DOI
35 Colsoul, B., Nilius, B., and Vennekens, R. (2013). Transient receptor potential (TRP) cation channels in diabetes. Curr. Top. Med. Chem. 13, 258-269.   DOI
36 Cosens, D. and Manning, A. (1969). Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285-287.   DOI
37 Dart, C. (2010). Lipid microdomains and the regulation of ion channel function. J. Physiol. 588, 3169-3178.   DOI
38 Perraud, A.L., Takanishi, C.L., Shen, B., Kang, S., Smith, M.K., Schmitz, C., Knowles, H.M., Ferraris, D., Li, W., and Zhang, J. (2005). Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J. Biol. Chem. 280, 6138-6148.   DOI
39 Parks, D.J., Parsons, W.H., Colburn, R.W., Meegalla, S.K., Ballentine, S.K., Illig, C.R., Qin, N., Liu, Y., Hutchinson, T.L., and Lubin, M.L. (2010). Design and optimization of benzimidazole-containing transient receptor potential melastatin 8 (TRPM8) antagonists. J. Med. Chem. 54, 233-247.   DOI
40 Peier, A.M., Moqrich, A., Hergarden, A.C., Reeve, A.J., Andersson, D.A., Story, G.M., Earley, T.J., Dragoni, I., McIntyre, P., and Bevan, S. (2002). A TRP channel that senses cold stimuli and menthol. Cell 108, 705-715.   DOI
41 Qin, N., Neeper, M.P., Liu, Y., Hutchinson, T.L., Lubin, M.L., and Flores, C.M. (2008). TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J. Neurosci. 28, 6231-6238.   DOI
42 Rabini, R.A., Galassi, R., Fumelli, P., Dousset, N., Solera, M.L., Valdiguie, P., Curatola, G., Ferretti, G., Taus, M., and Mazzanti, L. (1994). Reduced Na(+)-K(+)-ATPase activity and plasma lysophosphatidylcholine concentrations in diabetic patients. Diabetes 43, 915-919.   DOI
43 Ramsey, I.S., Delling, M., and Clapham, D.E. (2006). An introduction to TRP channels. Annu. Rev. Physiol. 68, 619-647.   DOI
44 Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., and Santamaria, P. (2006). TRPV1+ sensory neurons control ${\beta}$ cell stress and islet inflammation in autoimmune diabetes. Cell 127, 1123-1135.   DOI
45 Smeets, A.J. and Westerterp-Plantenga, M.S. (2009). The acute effects of a lunch containing capsaicin on energy and substrate utilisation, hormones, and satiety. Euro. J. Nutr. 48, 229-234.   DOI
46 Riera, C.E., Huising, M.O., Follett, P., Leblanc, M., Halloran, J., Van Andel, R., de Magalhaes Filho, C.D., Merkwirth, C., and Dillin, A. (2014). TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell 157, 1023-1036.   DOI
47 Rossato, M., Granzotto, M., Macchi, V., Porzionato, A., Petrelli, L., Calcagno, A., Vencato, J., De Stefani, D., Silvestrin, V., and Rizzuto, R. (2014). Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production. Mol. Cell. Endocrinol. 383, 137-146.   DOI
48 Saito, M. and Yoneshiro, T. (2013). Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Curr. Opin. Lipidol. 24, 71-77.   DOI
49 Seabrook, G.R., Sutton, K.G., Jarolimek, W., Hollingworth, G.J., Teague, S., Webb, J., Clark, N., Boyce, S., Kerby, J., and Ali, Z. (2002). Functional properties of the high-affinity TRPV1 (VR1) vanilloid receptor antagonist (4-hydroxy-5-iodo-3-methoxyphenylacetate ester) iodo-resiniferatoxin. J. Pharmacol. Exp. Ther. 303, 1052-1060.   DOI
50 Shen, D., Wang, X., Li, X., Zhang, X., Yao, Z., Dibble, S., Dong, X.P., Yu, T., Lieberman, A.P., and Showalter, H.D. (2012). Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nature Commun. 3, 731.   DOI
51 Sohn, J.W., Elmquist, J.K., and Williams, K.W. (2013). Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 36, 504-512.   DOI
52 Sprous, D. and Palmer, R.K. (2010). The T1R2/T1R3 sweet receptor and TRPM5 ion channel: taste targets with therapeutic potential. Prog. Mol. Biol. Transl. Sci. 91, 151-208.   DOI
53 Svobodova, B. and Groschner, K. (2016). Mechanisms of lipid regulation and lipid gating in TRPC channels. Cell Calcium 59, 271-279.   DOI
54 Takezawa, R., Cheng, H., Beck, A., Ishikawa, J., Launay, P., Kubota, H., Kinet, J.P., Fleig, A., Yamada, T., and Penner, R. (2006). A pyrazole derivative potently inhibits lymphocyte $Ca^{2+}$ influx and cytokine production by facilitating TRPM4 channel activity. Mol. Pharmacol. 69, 1413-1420.   DOI
55 Tani, Y., Fujioka, T., Sumioka, M., Furuichi, Y., Hamada, H., and Watanabe, T. (2004). Effects of capsinoid on serum and liver lipids in hyperlipidemic rats. J. Nutr. Sci. Vitaminol. 50, 351-355.   DOI
56 Trevisani, M., Siemens, J., Materazzi, S., Bautista, D.M., Nassini, R., Campi, B., Imamachi, N., Andre, E., Patacchini, R., and Cottrell, G.S. (2007). 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc. Natl. Acad. Sci. 104, 13519-13524.   DOI
57 Tiede, S., Cantz, M., Spranger, J., and Braulke, T. (2006). Missense mutation in the N-acetylglucosamine-1-phosphotransferase gene (GNPTA) in a patient with mucolipidosis II induces changes in the size and cellular distribution of GNPTG. Hum. Mutat. 27, 830-831.
58 Tiede, S., Muschol, N., Reutter, G., Cantz, M., Ullrich, K., and Braulke, T. (2005). Missense mutations in N-acetylglucosamine-1-phosphotransferase ${\alpha}/{\beta}$ subunit gene in a patient with mucolipidosis III and a mild clinical phenotype. Am. J. Med. Genet. A 137, 235-240.
59 Togashi, K., Hara, Y., Tominaga, T., Higashi, T., Konishi, Y., Mori, Y., and Tominaga, M. (2006). TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J. 25, 1804-1815.   DOI
60 Suzuki, M., Mizuno, A., Kodaira, K., and Imai, M. (2003). Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278, 22664-22668.   DOI
61 Wang, H. and Siemens, J. (2015). TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature 2, 178-187.   DOI
62 Uchida, K., Dezaki, K., Yoneshiro, T., Watanabe, T., Yamazaki, J., Saito, M., Yada, T., Tominaga, M., and Iwasaki, Y. (2017). Involvement of thermosensitive TRP channels in energy metabolism. J. Physiol. Sci. 67, 549-560.   DOI
63 Uchida, K. and Tominaga, M. (2011). The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion. Endocr. J. 58, 1021-1028.   DOI
64 Venkatachalam, K. and Montell, C. (2007). TRP channels. Annu. Rev. Biochem. 76, 387-417.   DOI
65 Venkatachalam, K., Wong, C.O., and Montell, C. (2013). Feast or famine: role of TRPML in preventing cellular amino acid starvation. Autophagy 9, 98-100.   DOI
66 Walder, R.Y., Yang, B., Stokes, J.B., Kirby, P.A., Cao, X., Shi, P., Searby, C.C., Husted, R.F., and Sheffield, V.C. (2009). Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum. Mol. Genet. 18, 4367-4375.   DOI
67 Wang, X., Miyares, R.L., and Ahern, G.P. (2005). Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J. Physiol. 564, 541-547.   DOI
68 Wanner, S.P., Garami, A., and Romanovsky, A.A. (2011). Hyperactive when young, hypoactive and overweight when aged: connecting the dots in the story about locomotor activity, body mass, and aging in Trpv1 knockout mice. Aging (Albany NY) 3, 450-457.   DOI
69 Whiting, S., Derbyshire, E., and Tiwari, B. (2014). Could capsaicinoids help to support weight management? A systematic review and meta-analysis of energy intake data. Appetite 73, 183-188.   DOI
70 David-Vizcarra, G., Briody, J., Ault, J., Fietz, M., Fletcher, J., Savarirayan, R., Wilson, M., McGill, J., Edwards, M., and Munns, C. (2010). The natural history and osteodystrophy of mucolipidosis types II and III. J. Paediatr. Child Health 46, 316-322.   DOI
71 Fernandes, E., Fernandes, M., and Keeble, J. (2012). The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br. J. Pharmacol. 166, 510-521.   DOI
72 Futerman, A.H. and Van Meer, G. (2004). The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554-565.   DOI
73 Grand, T., Demion, M., Norez, C., Mettey, Y., Launay, P., Becq, F., Bois, P., and Guinamard, R. (2008). 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br. J. Pharmacol. 153, 1697-1705.   DOI
74 Grundy, S.M. (2004). Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab. 89, 2595-2600.   DOI
75 Holzer, P. (2011). Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol. Ther. 131, 142-170.   DOI
76 Huang, S. and Czech, M.P. (2007). The GLUT4 glucose transporter. Cell Metab. 5, 237-252.   DOI
77 Jang, Y., Lee, M.H., Lee, J., Jung, J., Lee, S.H., Yang, D.J., Kim, B.W., Son, H., Lee, B., and Chang, S. (2014). TRPM2 mediates the lysophosphatidic acidinduced neurite retraction in the developing brain. Pflugers Arch. 466, 1987-1998.   DOI
78 Jiang, C., Zhai, M., Yan, D., Li, D., Li, C., Zhang, Y., Xiao, L., Xiong, D., Deng, Q., and Sun, W. (2017). Dietary menthol-induced TRPM8 activation enhances WAT "browning" and ameliorates diet-induced obesity. Oncotarget 8, 75114.   DOI
79 Wong, C.O., Li, R., Montell, C., and Venkatachalam, K. (2012). Drosophila TRPML is required for TORC1 activation. Curr. Biol. 22, 1616-1621.   DOI
80 Williams, K.W. and Elmquist, J.K. (2012). From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 15, 1350.   DOI
81 Yoshioka, M., Lim, K., Kikuzato, S., Kiyonaga, A., Tanaka, H., Shindo, M., and Suzuki, M. (1995). Effects of red-pepper diet on the energy metabolism in men. J. Nutr. Sci. Vitaminol. 41, 647-656.   DOI
82 Julius, D. (2013). TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29, 355-384.   DOI
83 Wu, X., Eder, P., Chang, B., and Molkentin, J.D. (2010). TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc. Natl. Acad. Sci. 107, 7000-7005.   DOI
84 Xiao, B., Dubin, A.E., Bursulaya, B., Viswanath, V., Jegla, T.J., and Patapoutian, A. (2008). Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J. Neurosci. 28, 9640-9651.   DOI
85 Xu, H., Blair, N.T., and Clapham, D.E. (2005). Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 25, 8924-8937.   DOI
86 Ye, L., Kleiner, S., Wu, J., Sah, R., Gupta, R.K., Banks, A.S., Cohen, P., Khandekar, M.J., Bostrom, P., and Mepani, R.J. (2012). TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151, 96-110.   DOI
87 Yu, X., Yu, M., Liu, Y., and Yu, S. (2016). TRP channel functions in the gastrointestinal tract. Semin. Immunopathol. 38, 385-396.   DOI
88 Zhang, L.L., Yan Liu, D., Ma, L.Q., Luo, Z.D., Cao, T.B., Zhong, J., Yan, Z.C., Wang, L.J., Zhao, Z.G., Zhu, S.J., et al. (2007). Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ. Res. 100, 1063-1070.   DOI
89 Kang, J.H., Tsuyoshi, G., Han, I.S., Kawada, T., Kim, Y.M., and Yu, R. (2010). Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity 18, 780-787.   DOI
90 Kahn-Kirby, A.H., Dantzker, J.L., Apicella, A.J., Schafer, W.R., Browse, J., Bargmann, C.I., and Watts, J.L. (2004). Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119, 889-900.   DOI
91 Kim, M.J., Son, H.J., Song, S.H., Jung, M., Kim, Y., and Rhyu, M.R. (2013). The TRPA1 agonist, methyl syringate suppresses food intake and gastric emptying. PLoS One 8, e71603.   DOI
92 Kim, S.H., Lee, Y., Akitake, B., Woodward, O.M., Guggino, W.B., and Montell, C. (2010). Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc. Natl. Acad. Sci. 107, 8440-8445.   DOI
93 Kraft, R., Grimm, C., Frenzel, H., and Harteneck, C. (2006). Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl) anthranilic acid. Br. J. Pharmacol. 148, 264-273.   DOI
94 Kumar, A., Goswami, L., and Goswami, C. (2013). Importance of TRP channels in pain: implications for stress. Front. Biosci. (Schol. Ed.) 5, 19-38.
95 Kusudo, T., Wang, Z., Mizuno, A., Suzuki, M., and Yamashita, H. (2011). TRPV4 deficiency increases skeletal muscle metabolic capacity and resistance against diet-induced obesity. J. Appl. Physiol. 112, 1223-1232.   DOI
96 Zsombok, A. and Derbenev, A.V. (2016). TRP channels as therapeutic targets in diabetes and obesity. Pharmaceuticals 9, 50.   DOI
97 Lanner, J.T., Bruton, J.D., Katz, A., and Westerblad, H. (2008). $Ca^{2+}$ and insulin-mediated glucose uptake. Curr. Opin. Pharmacol. 8, 339-345.   DOI
98 Lee, E., Jung, D.Y., Kim, J.H., Patel, P.R., Hu, X., Lee, Y., Azuma, Y., Wang, H.F., Tsitsilianos, N., and Shafiq, U. (2015). Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. FASEB J. 29, 3182-3192.   DOI
99 Zhang, Z., Zhang, W., Jung, D.Y., Ko, H.J., Lee, Y., Friedline, R.H., Lee, E., Jun, J., Ma, Z., and Kim, F. (2012). TRPM2 $Ca^{2+}$ channel regulates energy balance and glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 302, E807-E816.   DOI
100 Zhu, Z., Luo, Z., Ma, S., and Liu, D. (2011). TRP channels and their implications in metabolic diseases. Pflügers Arch. 461, 211-223.   DOI
101 Lee, Y. (2013). Contribution of Drosophila TRPA1-expressing neurons to circadian locomotor activity patterns. PLoS One 8, e85189.   DOI
102 Liu, D., Zhu, Z., and Tepel, M. (2008). The role of transient receptor potential channels in metabolic syndrome. Hypertens. Res. 31, 1989-1995.   DOI
103 Lee, J.E., Kim, Y., Kim, K.H., Lee, D.Y., and Lee, Y. (2016). Contribution of Drosophila TRPA1 to metabolism. PLoS One 11, e0152935.   DOI
104 Leibiger, I.B., Leibiger, B., and Berggren, P.O. (2002). Insulin feedback action on pancreatic ${\beta}$-cell function. FEBS Lett. 532, 1-6.   DOI
105 Liedtke, W., Choe, Y., Marti-Renom, M.A., Bell, A.M., Denis, C.S., Hudspeth, A., Friedman, J.M., and Heller, S. (2000). Vanilloid receptorrelated osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525-535.   DOI
106 Liu, H., Dear, A.E., Knudsen, L.B., and Simpson, R.W. (2009). A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J. Endocrinol. 201, 59-66.   DOI
107 Liu, M., Huang, W., Wu, D., and Priestley, J.V. (2006). TRPV1, but not P2X3, requires cholesterol for its function and membrane expression in rat nociceptors. Eur. J. Neurosci. 24, 1-6.   DOI