• Title/Summary/Keyword: glucoamylase productivity

Search Result 20, Processing Time 0.033 seconds

Effect of Plasmid Stability on the Glucoamylase Productivity of Saccharomyces diastaticus Harboring Recombinant Plasmid Containing Glucoamylase Gene STA 1 (Glucoamylase 유전자 STA1이 포함된 재조합 Plasmid를 갖는 Saccharomyces diastaticus 의 Glucoamylase 생산성에 미치는 Plasmid 안정성의 영향)

  • Ahn, Jong-Seog;Hwang, In-Kyu;Jeong, Min-Sun;Mheen, Tae-Ick
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.606-610
    • /
    • 1989
  • For the purpose of improving glucoamylase productivity of Saccharomyces diastaticus, useful yeast in direct ethanol fermentation of starch, the effects of growth rate on the plasmid stability and glucoamylase productivity of S. diastaticus harboring recombinant plasmid pYES 18 containing glucoamylase gene STA 1 were investigated. In a selective medium, the recombinant plasmids were maintained stably at constant level but glucoamylase productivity was very low. On the other hand, in the complex medium containing starch, growth rate of the cell was stimulated by the supplementation of glucose and plasmid stability was improved by growth stimulation. We can conclude that glucoamylase productivity of S. diastaticus harboring the recombinant plasmid was increased as the maintaining of high plasmid stability in the cell.

  • PDF

Improvement of Glucoamylase Productivity of Saccharomyces diastaticus by Intergration of Glucoamylase Gene, STA, into Chromosomal DHA (Glucoamylase 유전자 STA의 염색체내 삽입에 의한 Saccharomyces diastaticus의 glucoamylase 생성능 향상)

  • 안종석;맹준호;강대욱;황인규;민태익
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.48-53
    • /
    • 1993
  • For the purpose to improve the glucoamylase productivity of Saccharomyces diastaticus, we integrated STA 1 gene into chromosomal DNA of S. diastaticus using YIp vector. After construction of Ylp-STA by the subcloning of STAI (5.3 kb) into YIp5 vector, S. diastaticus GMT-II(a. ura3. STAJ) was transformed by Ylp-STA through homologous recombination at the chromosomal STAJ gene. So we obtained the tram formants that glucoamylase productivity was increased maximum six fold. These strains transformed by the multi-copy integration of Ylp-STA in chromosomal DNA were confirmed by Southern hybridization. And the integrated Ylp-STA was maintained stably during 30 mitotic divisions.

  • PDF

Culture Conditions for Glucoamylase Production and Ethanol Productivity of Heterologous Transformant of Saccharomyces cerevisiae by Glucoamylase Gene of Saccharomyces diastaticus (Transformant의 Glucoamylase 생성조건과 Ethanol 발효성)

  • Kim, Young-Ho;Jung-Hwn Seu
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.494-498
    • /
    • 1988
  • The optimum conditions for glucoamylase production, and ethanol productivity of the transformant TSD-14 were investigated as compared with the parental strains. The properties of TSD-14 were comparatively similar to the donor S. diastaticus IFO 1046 as regards the conditions of glucoamylase production and ethanol productivity. The soluble starch was the most effective carbon source for the glucoamylase production. While inorganic nitrogen sources did not prompt cell growth and enzyme production, the organic nitrogen sources generally enhanced both cell growth and glucoamylase production. The metal salts such as FeSO$_4$, MgSO$_4$, MnCl$_2$, and NiSO$_4$were favorable to the enzyme production. And the optium temperature and initial pH for glucoamylase production were 3$0^{\circ}C$ and 5. The transformant TSD-14 produced 8.3%(v/v) ethanol from 15% sucrose medium, 4.8%(v/v) ethanol from 15% soluble starch medium, and 7.5%(v/v) ethanol from 15% liquefied potato starch medium. The corresponding fermentation efficiency were 84% , 45% and 70%, respectively.

  • PDF

Studies on the Raw Starch Saccharifying Enzyme from the Aspergillus niger and Its Mutants (Aspergillus niger 및 그 변이주(變異株)의 생전분당화효소(生澱粉糖化酵素)에 관(關)한 연구(硏究))

  • Sohn, Cheon Bae;Park, Yoon Joong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.166-185
    • /
    • 1983
  • Aspergillus niger IFO 8541 (NRRL 3112) was investigated through a series of UV rays and N-Methyl-N'-Nitro-N-Nitrosoguanidine (NTG) treatments to induce mutants that produce highly active raw starch saccharifying enzyme, and two mutants with strong enzymatic productivity were obtained. The mutants obtained were investigated for their fungal characters, condition of enzyme production, and other activities. Furthermore, the raw starch saccharifying enzyme was purified and the characteristics of purified enzyme were studied. The results obtained were summarized as follows; 1. The color of conidial head of UV-46 mutant obtained from UV rays treatment was changed to tan type and the gelatinated starch saccharifying enzyme productivity and the raw starch saccharifying enzyme productivity increased up to twice and 1.8 times compared to the productivities of original Aspergillus niger IFO 8541 cultured on the wheat bran, respectively. 2. The conidial head color of NG-41 mutant obtained from NTG treatment became lighter than that of parent strain. The gelatinated starch saccharifying enzyme productivity and raw starch saccharifying enzyme productivity increased about 1.8 times, and twice over the Aspergillus niger IFO 8541 parent strain cultured on wheat bran, respectively. The productivity of ${\alpha}$-amylase increased about 3 times more than the parent strain. 3. Two peaks of glucoanlylase and a peak of ${\alpha}$-amylase were obtained when enzyme solution of mutants and parent strain were passed through DEAE-Sephadex A-50 column chromatography. Glucoamylase I showed only gelatinated starch saccharifying enzyme activity. However, glucoamylase II (raw starch saccharifying enzyme) showed both raw starch saccharifying enzyme activity and gelatinated starch saccharifying enzyme activity. 4. Mutant, UV-46 was strengthened in glucoamylase II productivity and mutant NG-41 was strengthened in ${\alpha}$-amylase productivity. 5. Glucoamylase II of mutants and parent strain were appeared to have the same enzymatic properties. 6. Glucoamylase II of mutants and parent strain were recognized as simple enzyme through electrophoresis. 7. The glucoamylase II crystallized showed rhombic board type. 8. The molecular weight, isoelectric point, optimum pH, and optimum temperature of the glucoamylase II crystallized were estimated as 76,000, 3.4, 3.5 and $60^{\circ}C$, respectively.

  • PDF

Further induction of amylase producing mutants from a highly proteolytic mutant strain of asppergillus flavus (돌연변이에 의한 Aspergillus flavus의 아밀라아제 생성능의 개량)

  • 이영록;고상균;김봉수
    • Korean Journal of Microbiology
    • /
    • v.18 no.4
    • /
    • pp.161-171
    • /
    • 1980
  • A mutant strain having increased productivity of both enzymes, protease and amylase, was obtained from A. flavus KU 153, isolatd from South Korea for its high protease production by successive ultra-violet light irradiation, Two glucoamylases from the mutant strain selected were purified from wheat branculture by successive salting out, followed by dialysis and column chromatography, and their characteristics were compared with those of the wild strain. Glucoamylase production of the mutant selected was increased about 3.3 times compared with the wild strain, and 2.1 times compared with the parental strain, ${\alpha}-amylase$ activity of the mutant selected was about 2 times hugher than that of the wild strain or the parental strain. Protease and cellulase productivities of the muant selected were all alike compared with those of the highly proteolytic mutant, the parental strain. Therefore, it was considered that the back mutation on the protease production did not occurred in the formation process of the glucoamylase producing mutant. Total activities of glucoamylase I and II from the mutant selected were 2.86 and 3.65 times higher compared with those from the wild strain, respectively. Considering the optimal pH-thermal stability and Km-Vmax value of glucoamylase I and II from both strains, wild and mutant, it was deduced that the characteristics of glucoamylase I and II from the wild strain did not altered during the mutation process. Therefore, it was concluded that the selected mutant did not induce the formation of another glucoamylase isozyme, or the changes in the characteristics of the glucoamylase, but induce the productivity of the same glucoamylase I and II by the action of regulatory gene.

  • PDF

Effects of Inducible Substrates on the Co-production of Glucoamylase and Exopolygalacturonase from Cryptococcus laurentii Y-23 (Cryptococcus laurentii Y-23의 glucoamylase와 exopolygalacturonase의 동시발효에 미치는 유도기질의 영향)

  • Kim, Chang-Hwa;Paik, Sang-Kyoo;Yun, Hye-Sun;Jin, Ing-Nyol;Yu, Choon-Bal
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.875-880
    • /
    • 2000
  • The production of glucoamylase and exopolygalacturonase from Cryptococcus laurentii Y-23 were investigated with the inducible substrates and mineral salts. Soluble starch induced only glucoamylase wherease pectin induced exopolygalacturonase as well as glucoamylase, and glucose did not induce glucoamylase whereas pectic acid induced a little amount of exopolygalacturonase. At the productions of two enzymes by inducible substrates for the 5 day-cultivation, the yeasts started log phase around 12 hours and mostly reached stationary phase around 36 hours. The best productivity of glucoamylase was observed with addition of soluble starch in the cultivation for 72 to 86 hours, and the high productivity of exopolygalacturonase was done by addition of both pectin and soluble starch in the cultivation for more than 72 hours. Without ammonium sulfate in the medium, however, cultural pH was so increased gradually that production of both enzymes were decreased and delayed as well. $Mn^{2+}$ increased both productivities of glucoamylase and exopolygalacturonase with 21% and 18%, respectively.

  • PDF

Efficient and Cost-Reduced Glucoamylase Fed-Batch Production with Alternative Carbon Sources

  • Luo, Hongzhen;Liu, Han;He, Zhenni;Zhou, Cong;Shi, Zhongping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.185-195
    • /
    • 2015
  • Glucoamylase is an important industrial enzyme. Glucoamylase production by industrial Aspergillus niger strain featured with two major problems: (i) empirical substrate feeding methods deteriorating the fermentation performance; and (ii) the high raw materials cost limiting the economics of the glucoamylase product with delegated specification. In this study, we first proposed a novel three-stage varied-rate substrate feeding strategy for efficient glucoamylase production in a 5 L bioreactor using the standard feeding medium, by comparing the changing patterns of the important physiological parameters such as DO, OUR, RQ, etc., when using different substrate feeding strategies. With this strategy, the glucoamylase activity and productivity reached higher levels of 11,000 U/ml and 84.6 U/ml/h, respectively. The performance enhancement in this case was beneficial from the following results: DO and OUR could be controlled at the higher levels (30%, 43.83 mmol/l/h), while RQ was maintained at a stable/lower level of 0.60 simultaneously throughout the fed-batch phase. Based on this three-stage varied-rate substrate feeding strategy, we further evaluated the economics of using alternative carbon sources, attempting to reduce the raw materials cost. The results revealed that cornstarch hydrolysate could be considered as the best carbon source to replace the standard and expensive feeding medium. In this case, the production cost of the glucoamylase with delegated specification (5,000 U/ml) could be saved by more than 61% while the product quality be ensured simultaneously. The proposed strategy showed application potential in improving the economics of industrial glucoamylase production.

Ethanol Fermentation of Corn Starch by a Recombinant Saccharomyces cerevisiae Having Glucoamylase and $\alpha$-Amylase Activities

  • Lee, Dae-Hee;Park, Jong-Soo;Ha, Jung-Uk;Lee, Seung-Cheol;Hwang, Yong-Il
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.4
    • /
    • pp.206-210
    • /
    • 2001
  • Starch is an abundant resource in plant biomass, and it should be hydrolyzed enzymatically into fermentable sugars for ethanol fermentation. A genetic recombinant yeast, Saccharomyces cerevisiae GA-7458, was constructed by integrating the structural gene of both $\alpha$-amylase from Bacillus stearothermophilus and the gene (STA1) encoding glucoamylase from S. diastaticus into the chromosome of S. cerevisiae SH7458. The recombinant yeast showed active enzymatic activities of $\alpha$-amylase and glucoamylase. The productivity of ethanol fermentation from the pH-controlled batch culture (pH 5.5) was 2.6 times greater than that of the pH-uncontrolled batch culture. Moreover, in a fed-batch culture, more ethanol was produced (13.2 g/L), and the production yield was 0.38 with 2% of corn starch. Importantly, the integrated plasmids were fully maintained during ethanol fermentation.

  • PDF

Application and Analysis of Rhizopus oryzae Mycelia Extending Characteristic in Solid-state Fermentation for Producing Glucoamylase

  • Tang, Xianghua;Luo, Tianbao;Li, Xue;Yang, Huanhuan;Yang, Yunjuan;Li, Junjun;Xu, Bo;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1865-1875
    • /
    • 2018
  • Enhanced application of solid-state fermentation (SSF) in industrial production and the influence of SSF of Rhizopus K1 on glucoamylase productivity were analyzed using the flat band method. A growth model was implemented through SSF of Rhizopus K1 in this experiment, and spectrophotometric method was used to determine glucoamylase activity. Results showed that in bran and potato culture medium with 70% moisture in a loose state, ${\mu}$ of mycelium reached to $0.15h^{-1}$ after 45 h of culture in a thermostatic water bath incubator at $30^{\circ}C$. Under a low-magnification microscope, mycelial cells appeared uniform, bulky with numerous branches, and were not easily ruptured. The generated glucoamylase activity reached to 55 U/g (dry basis). This study has good utilization value for glucoamylase production by Rhizopus in SSF.

Improvement of Aspergillus niger 55, a Raw Corn Meal Saccharifying Enzyme Hyperproducer, through Mutation and Selective Screening Techniques (옥수수 生 전분 당화 효소 高 생산성 변이주 개발)

  • Oh, Sung-Hoon;O, Pyong-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.140-146
    • /
    • 1991
  • Mutation experiments were performed to select the mutant of Aspergillus niger 55, which had lost almost all the ability to produce transglucosidases but retained that of high productivity of raw meal saccharifying enzyme, by means of successive induction with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG), ultraviolet(UV) light, and ${\gamma}$-rays. Also, we used the mutant enrichment techniques, such as liquid culture-filtration procedure and differential heat sensitivity of conidia, in order to increase the possibility of obtaining a mutant. The glucoamylase productivity of mutant PFST-38 was 11 times higher than that of the parent strain. The mutant PFST-38 was morphologically identical to the parent strain, except for the size of conidia, the tendency to form conidia and the lenght of conidiophore. Asp. niger mutant PFST-38 apeared to be useful for the submerged production of the raw corn meal saccharifying enzyme.

  • PDF