• 제목/요약/키워드: glow discharge

검색결과 260건 처리시간 0.03초

저기압하의 아르곤 가스의 RF 글로우 방전특성 (RF Glow Discharge Characteristics of Argon at Low Gas Pressure)

  • 곽동주;김두환;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1382-1384
    • /
    • 1995
  • In order to study the structure of RF glow discharge driven at 13.56MHz in argon, the discharge voltage, current and phase shift between them will be measured over a wide range of discharge parameters(gas pressure between 1mTorr and 50mTorr with discharge power between 20mW and 200W). In this paper, the dc glow discharge characteristics and plasma parameters of both FTS and CPMS systems are studied experimentally. It is found that for CPMS system discharge is stablized under wider ranges of magnetic field and pressure than for FTS system. The plasma density and electron temperature of the plasma for these two systems are in the range of $10^{10}{\sim}7{\times}10^{11}[cm^{-3}]$ and $3.5{\sim}6.5$[eV], respectively.

  • PDF

방전에너지 제어에 의한 최소점화에너지의 고찰 (A Study on Minimum Ignition Energy by Controlled Discharge Energy)

  • 최상원;대택돈
    • 한국안전학회지
    • /
    • 제22권1호
    • /
    • pp.36-39
    • /
    • 2007
  • It is important to know Minimum Ignition Energy(MIE) of flammable materials for ignition hazard of chemical processes etc.. Currently a capacitor discharge is used mainly to measure the MIE. Then, it is impossible to control actively discharge energies and discharge time because the MIE measurement uses a high voltage capacitor and fixed capacitor. However, the control of discharge energy and discharge time will be convenient if self-sustain discharge is used. In this paper, we measured the MIE by self-sustain discharge of a pulse shape to propose the new measuring method of the MIE. AS a result, ignition energies are increased gradually as discharge duration time gets longer, and discharge current grows larger. Also, an arc discharge and a glow discharge occurred during the experimental period, and the ignition by glow discharges happened when discharge duration time was $90{\mu}s$, discharge current was 8A and 1A Especially, the MIE occurred the 0.05mm and 0.08mm of the gap distance between discharge electrode in the same discharge duration time.

유기 가스중 고주파 글로우가전 특성에 관한 연구 (The Study on Characteristics of High Frequency Glow Discharge in Organic Vapor)

  • 이덕출;김은배;박상현;박종대
    • 대한전기학회논문지
    • /
    • 제34권9호
    • /
    • pp.355-360
    • /
    • 1985
  • In this paper, the discharge phenomena of high frequency glow discharge in organic vapor are basically investigted to establish the growth mechanism and preparation technique for organic thin film. According to the increasing of discharge frequency, the discharge firing voltage(Vs) of organic vapor decreases. The dependence of discharge voltage(Vd) on gas pressure is generally in accord with Paschen's Law and Vd decreases as gas flow rate become larger, but increases as dischange current density become higher. And the values of Vd in organic vapor are generally higher than those of inorganic gas.

  • PDF

대향 음극형 플라즈마 프로세스의 글로우 방전특성에 관한 연구 (A Study on the Glow Discharge Characteristics of Facing Target Plasma Process)

  • Park, Chung-Hoo;Cho, Jung-Soo;Kim, Kwang-Hwa;Sung, Youl-Mool
    • 대한전기학회논문지
    • /
    • 제43권3호
    • /
    • pp.478-484
    • /
    • 1994
  • Facing target dc sputtering system developed by Hoshi et al. has simple configuration and high deposition rate under moderate substrate temperature in the range of pressure 5x10S0-4T - 1x10S0-2T torr. In this system, magnetic field should be applied perpendicular to the target surface in order to confine high energy secondary electrons between two targets. Because of this magnetic field, the glow discharge characteristics are very different from dc planar diode system showing some unstable discharge region. In this paper, the glow discharge characteristics of this system have been studied under the condition of Ti targets with Ar-NS12T(10%) as working gas. It is found that this system has stable discharge region under the discharge current density of 15-30(mA/cmS02T). The plasma density and electron temperature are in the range of 10S010Y - 10S011T(CMS0-3T) and 2.5-5(eV), respectively.

고주파 글로우 방전을 이용한 GRIMM형 방전원의 특성 및 방출/흡광분석법 연구 (Characterization and Emission/Absorption Study of a Grimm-type Glow discharge source in the application of high frequency Glow Discharge)

  • 서정기;우진춘
    • 분석과학
    • /
    • 제7권2호
    • /
    • pp.155-164
    • /
    • 1994
  • 전형적인 Grimm형 방전관을 제작하고 고주파 방전에 의한 금속 및 세라믹시료 분석에 적용하였다. 금속 알루미늄과 알루미나에 대해 방출 스펙트럼을 관찰하였고 방전에 미치는 고주파의 전력과 알곤 기체의 압력에 대한 영향을 관찰하였으며, 시료와 접촉된 전극에 나타나는 DC-bias voltage를 확인하였다. 또한 SEM 사진을 관찰함으로써 rf-sputtering에 의한 알루미나 표면의 미세구조를 확인하였다. 저합금강(BAS 404-405) 중의 망간성분과 황동시료(NIST 1108-1117) 중의 아연성분에 대해 검량곡선을 작성한 결과 양호한 직선성을 보여 주었다.

  • PDF

원자 방출 분광 분석을 위한 개선된 관통형 속빈 음극관 글로우 방전 셀 개발 및 기초 연구 (The Fundamental Studies and Development of the Modified See - Through Hollow Cathode Glow Discharge Cell for Atomic Emission Spectrochemical Analysis)

  • 이성훈;조원보;정종필;최우창;스튜어드 보든;김규환;이장수;이상천
    • 분석과학
    • /
    • 제15권6호
    • /
    • pp.502-508
    • /
    • 2002
  • 관통형 속빈 음극관 글로우 방전 (See-through hollow cathode glow discharge)셀을 이용한 미량 및 극미량 분석을 가능한 분광 분석 장치를 개발하였다. 이 장치는 기존의 관통형 속빈 음극관 글로우 방전 셀을 개선하기 위하여 수냉식 냉각 장치를 부착한 새로운 방전 셀의 형태로 개발하였다. 기존의 방전 셀로 미량 및 극미량 분석은 가능하였지만, 공랭식 냉각장치로도 플라즈마의 온도를 높이는 데 한계가 있으며, 단 시간에 플라즈마가 불안정해지는 문제점이 발생하였다. 이러한 문제점을 개선하기 위해서 본 장치에서는 수냉식 냉각 방식을 채택하여 플라즈마의 안정성을 높였으며, 플라즈마 온도를 증가시킬 수 있다. 개선된 방전 셀의 기초 연구를 위해 속빈 음극관의 재질 및 구경변화에 따른 방전 전력 및 압력에 관련한 연구를 하였으며, 속빈 음극관의 구경의 변화에 따른 플라즈마 온도 변화에 대해 측정하였다.

마이크로 채널 반응기 내 상압 글로우 플라즈마 생성 및 응용 (Generation and Application of Atmospheric Pressure Glow Plasma in Micro Channel Reactor)

  • 이대훈;박현향;이재옥;이승섭;송영훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1869-1873
    • /
    • 2008
  • In this work, to make it possible to generate glow discharge in atmospheric pressure condition with relatively high and wide electric field, micro channel reactor is proposed. Si DRIE and Cr deposition by Ebeam evaporation is used to make channel and bottom electrode layer. Upper electrode is made from ITO glass to visualize discharge within micro channel. Fabricated reactor is verified by generating uniform glow plasma with N2 / He gases each as working fluid. The range of gas electric field to generate glow plasma is from about 200 V/cm and upper limit is not observed in tested condition of up to 150 kV/cm. This data shows that micro channel plasma reactor is more versatile. Indirect estimation of electron temperature in this reactor can be inferred that the electron temperature within glow discharge in micro reactor lies $0{\sim}2eV$. This research demonstrates that the reactor is appropriate in application that needs to maintain low temperature condition during chemical process.

  • PDF

Analytical Application of Glow Discharge Atomic Absorption Spectroscopy (GD-AAS) Using Three Types of Jet Configurations Under Power Mode

  • Hwang, Jun Ho;Lee, Ki Beom;Kim, Min Su;Lee, Seong Ro;Kim, Hasuck;Kim, Hyo Jin;Lee, Gae Ho
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.443-448
    • /
    • 1995
  • Three anode configurations of six-jet, cone-jet and cylindrical-jet are tested for their analytical performance under power mode operation. The effect of pressure, power and gas flow rate on atomic absorption signals have been studied. The increase of atomic absorption signal of sample element is observed at a fixed pressure in all configurations as the gas flow rate increase up to 300-600 seem, and as the power dissipated in the glow discharge cell increase. The lower the pressure is in the glow discharge cell at a fixed discharge power and argon flow rate, the greater the absorbance of sample element is. The optimum conditions are taken from these data and a calibration curve of Cu in low-alloy steel sample is obtained. In this calibration curve, six-jet configuration shows the best analytical results varies as the sample element.

  • PDF

헬륨 대기압 유전체 격벽 방전기의 타운젠트-글로우 방전 모드 전이 연구 (Observation of Discharge Mode Transient from Townsend to Glow at Breakdown of Helium Atmospheric Pressure Dielectric Barrier Discharge)

  • 배병준;김남균;윤성영;신준섭;김곤호
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.26-31
    • /
    • 2016
  • The Townsend to glow discharge mode transition was investigated in the dielectric barrier discharge (DBD) helium plasma source which was powered by 20 kHz / $4.5 kV_{rms}$ high voltage at atmospheric pressure. The spatial profile of the electric field strength at each modes was measured by using the intensity ratio method of two helium emission lines (667.8 nm ($3^1D{\rightarrow}2^1P$) and 728.1 nm ($3^1S{\rightarrow}2^1P$)) and the Stark effect. ICCD images were analyzed with consideration for the electric field property. The Townsend discharge (TD) mode at the initial stage of breakdown has the light emission region located in the vicinity of the anode. The electric field of the light emitting region is close to the applied field in the system. Immediately, the light emitting region moves to the cathode and the discharge transits to the glow discharge (GD) mode. This mode transition can be understood with the ionization wave propagation. The electric field of the emitting region of GD near cathode is higher than that of TD near anode because of the cathode fall formation. This observation may apply to designing a DBD process system and to analysis of the process treatment results.