• 제목/요약/키워드: globular clusters: general

검색결과 25건 처리시간 0.021초

STUDY ON GRAVOTHERMAL OSCILLATIONS WITH TWO-COMPONENT FOKKER-PLANCK MODELS

  • KIM SUNGSOO S.;LEE HYUNG MOK
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.143-144
    • /
    • 1996
  • Two-component models (normal star and degenerate star components) are the simplest realization of clusters with a mass spectrum because the high mass stars quickly evolve off leaving degenerate stars behind, while low mass stars survive for a long time as main-sequence stars. In the present study we examine the post-collapse evolution of globular clusters using two-component Fokker-Planck models that include three-body binary heating. We confirm that a simple parameter ${\epsilon}{\equiv} (E_{tot}/t_{rh})/(E_c/t_{rc})$ well describes the occurrence of gravothermal oscillations of two-component clusters. Also, we find that the degree of instability depends on the steepness of the mass function such that clusters with a steeper mass function are less exposed to instability.

  • PDF

SPATIAL DISTRIBUTION OF STARS AROUND SIX METAL-POOR GLOBULAR CLUSTERS IN THE GALACTIC BULGE

  • Chang, Cho-Rhong;Kim, Jae-Woo;Matsunaga, Noriyuki;Han, Mihwa;Ko, Jongwan;Chun, Sang-Hyun;Kang, Minhee;Sohn, Young-Jong
    • 천문학회지
    • /
    • 제46권6호
    • /
    • pp.203-224
    • /
    • 2013
  • Wide-field $JHK_s$ images obtained with the SIRIUS near-infrared camera of the IRSF 1.4m telescope are used to examine the tidal structures of the spatial stellar configuration around six metal-poor ([Fe/H]< -1.0) globular clusters located within 3 kpc from the Galactic center. The radial surface density profiles are obtained from the surface photometry of the cluster images and the star counting for the photometric data. For the star counting, candidates of cluster member stars are selected with an filtering algorithm in color-magnitude diagrams. We find that the six target clusters show tidal overdensity features in the radial surface density profiles. There is a break inside the tidal radius for each cluster, and the profile in the outer overdensity region is characterized by a power law. Two-dimensional density maps of all the clusters show distorted asymmetric stellar configurations in the outer region. In five out of the six target clusters, the overdensity features are likely to be associated with the effects of the Galaxy dynamical interaction and the cluster space motions. The observed tidal configurations of stars suggest that several metal-poor clusters in the Galactic bulge are possibly surviving remnants of mergers to build the old stellar system of the Galactic bulge.

Large Scale Distribution of Globular Clusters in the Coma Cluster

  • O, Seong-A;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.41.3-42
    • /
    • 2021
  • Coma cluster (Abell 1656) is one of the most massive local galaxy clusters such as Virgo, Fornax, and Perseus, which holds a large collection of globular clusters. Globular cluster systems (GCSs) in a galaxy cluster tell us a history of hierarchical cluster assembly and intracluster GCs (ICGCs) are known to trace the gravitational potential of the galaxy cluster. Previous studies of GCSs in Coma mainly utilized data obtained using Hubble Space Telescope (HST) with high spatial resolution. However, most of the data were based on narrow-field pointing observations. In this study we present the widest survey of GCSs in the Coma cluster using the archival Subaru/Hyper Suprime-Cam (HSC) g and r images, supplemented with the archival HST images. The Coma GCSs are largely extended in E-W and SW direction, along the general direction of Coma-Abell 1367 filament. This global structure of the GCSs is consistent with the spatial distribution of the intracluster light (ICL). ICGC spatial distribution is largely extended to almost ~50% of the virial radius. Most of these ICGCs are blue and metal-poor, which supports the scenario that ICGCs are mainly originated from dwarf galaxies and some proportion from brighter galaxies. Implications of the results will be discussed.

  • PDF

LOW-RESOLUTION SPECTROSCOPIC STUDIES OF GLOBULAR CLUSTERS WITH MULTIPLE POPULATIONS

  • LIM, DONGWOOK;HAN, SANG-IL;ROH, DONG-GOO;LEE, YOUNG-WOOK
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.255-259
    • /
    • 2015
  • Recent narrow-band Ca photometry discovered two distinct red giant branch (RGB) populations in some massive globular clusters (GCs) including M22, NGC 1851, and NGC 288. In order to investigate the differences in light/heavy elements abundances between the two subpopulations, we have performed low-resolution spectroscopy for stars on the two RGBs in these GCs. We find a significant difference (more than $4{\sigma}$) in calcium abundance from the spectroscopic HK' index for both M22 and NGC 1851. We also find a more than $8{\sigma}$ difference in CN band strength between the Ca-strong and Ca-weak subpopulations. For NGC 288, however, we detect the presence of a large difference only in the CN strength. The calcium abundances of the two subpopulations in this GC are identical within errors. We also find interesting differences in CN-CH relations among these GCs. While CN and CH indices are correlated in M22, they show an anti-correlation in NGC 288. However, NGC 1851 shows no difference in CH between two groups of stars having different CN strengths. The CN bimodality in these GCs could be explained by pollution from intermediate-mass asymptotic giant branch stars and/or fast-rotating massive stars. For the presence or absence of calcium bimodality and the differences in CN-CH relations, we suggest these would be best explained by how strongly type II supernovae enrichment has contributed to the chemical evolutions of these GCs.

ALTERNATING DIRECTION IMPLICIT METHOD FOR TWO-DIMENSIONAL FOKKER-PLANCK EQUATION OF DENSE SPHERICAL STELLAR SYSTEMS

  • Shin, Ji-Hye;Kim, Sung-Soo
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.91-97
    • /
    • 2007
  • The Fokker-Planck (FP) model is one of the commonly used methods for studies of the dynamical evolution of dense spherical stellar systems such as globular clusters and galactic nuclei. The FP model is numerically stable in most cases, but we find that it encounters numerical difficulties rather often when the effects of tidal shocks are included in two-dimensional (energy and angular momentum space) version of the FP model or when the initial condition is extreme (e.g., a very large cluster mass and a small cluster radius). To avoid such a problem, we have developed a new integration scheme for a two-dimensional FP equation by adopting an Alternating Direction Implicit (ADI) method given in the Douglas-Rachford split form. We find that our ADI method reduces the computing time by a factor of ${\sim}2$ compared to the fully implicit method, and resolves problems of numerical instability.

DARK MATTER CONTENT IN GLOBULAR CLUSTER NGC 6397

  • Shin, Jihye;Kim, Sungsoo S.;Lee, Young-Wook
    • 천문학회지
    • /
    • 제46권4호
    • /
    • pp.173-181
    • /
    • 2013
  • We trace the dynamical evolution of dark matter (DM) content in NGC 6397, one of the native Galactic globular clusters (GCs). The relatively strong tidal field (Galactocentric radius of ~ 6 kpc) and short relaxation timescale (~0.3 Gyr) of the cluster can cause a significant amount of DM particles to evaporate from the cluster in the Hubble time. Thus, the cluster can initially contain a non-negligible amount of DM. Using the most advanced Fokker-Planck (FP) method, we calculate the dynamical evolution of GCs for numerous initial conditions to determine the maximum initial DM content in NGC 6397 that matches the present-day brightness and velocity dispersion profiles of the cluster. We find that the maximum allowed initial DM mass is slightly less than the initial stellar mass in the cluster. Our findings imply that NGC 6397 did not initially contain a significant amount of DM, and is similar to that of NGC 2419, the remotest and the most massive Galactic GC.

CLOSE ENCOUNTERS BETWEEN A NEUTRON STAR AND A MAIN-SEQUENCE STAR

  • LEE HYUNG MOK;KIM SUNG S.;KANG HYESUNG
    • 천문학회지
    • /
    • 제29권1호
    • /
    • pp.19-30
    • /
    • 1996
  • We have examined consequences of strong tidal encounters between a neutron star and a normal star using SPH as a possible formation mechanism of isolated recycled pulsars in globular clusters. We have made a number of SPH simulations for close encounters between a main-sequence star of mass ranging from 0.2 to 0.7 $M_\bigodot$ represented by an n=3/2 poly trope and a neutron star represented by a point mass. The outcomes of the first encounters are found to be dependent only on the dimensionless parameter $\eta'{\equiv}(m/(m+ M))^{1/2}(\gamma_{min}/R_{MS})^{3/2}(m/M)^{{1/6)}$, where m and M are the mass of the main-sequence star and the neutron star, respectively, $\gamma_{min}$ the minimum separation between two stars, and $R_{MS}$ the size of the main-sequence star. The material from the (at least partially) disrupted star forms a disk around the neutron star. If all material in the disk is to be acctreted onto the neutron star's surface, the mass of the disk is enough to spin up the neutron star to spin period of 1 ms.

  • PDF

THE NON-LINEARITY EFFECT ON THE COLOR-TO-METALLICITY CONVERSION OF GLOBULAR CLUSTERS IN NGC 5128

  • KIM, HAK-SUB;YOON, SUK-JIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.261-263
    • /
    • 2015
  • The metallicity distribution of globular clusters (GCs) provides a crucial clue for the star formation history of their host galaxy. With the assumption that GCs are generally old, GC colors have been used as a proxy for GC metallicities. Bimodal color distributions of GCs observed in most large galaxies have, for decades, been interpreted as bimodal metallicity distributions, indicating the presence of two populations within a galaxy. However, the conventional view has been challenged by a new theory that non-linear GC color-metallicity relations can cause a bimodal color distribution even from a single-peaked metallicity distribution. Using photometric and spectroscopic data of NGC 5128 GCs in combination with stellar population simulation models, we examine the effect of non-linearity in GC color-metallicity relations on transformation of the color distributions into the metallicity distributions. Although in some colors offsets are present between observations and models for the color-metallicity relations, their overall shape agrees well for various colors. After the offsets are corrected, the observed spectroscopic metallicity distribution is well reproduced via modeled color-metallicity relations from various color distributions having different morphologies. We discuss the implications of our results.

On the Origin of the Oosterhoff Dichotomy among Globular Clusters and Dwarf Galaxies

  • Jang, Sohee;Lee, Young-Wook;Joo, Seok-Joo;Na, Chongsam
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.67.2-67.2
    • /
    • 2014
  • The presence of multiple populations is now well-established in most globular clusters in the Milky Way. In light of this progress, here we suggest a new model explaining the origin of the Sandage period-shift and the difference in mean period of type ab RR Lyrae variables between the two Oosterhoff groups. In our models, the instability strip in the metal-poor group II clusters, such as M15, is populated by second generation stars (G2) with enhanced helium and CNO abundances, while the RR Lyraes in the relatively metal-rich group I clusters like M3 are mostly produced by first generation stars (G1) without these enhancements. This population shift within the instability strip with metallicity can create the observed period-shift between the two groups, since both helium and CNO abundances play a role in increasing the period of RR Lyrae variables. The presence of more metal-rich clusters having Oosterhoff-intermediate characteristics, such as NGC 1851, as well as of most metal-rich clusters having RR Lyraes with longest periods (group III) can also be reproduced, as more helium-rich third and later generations of stars (G3) penetrate into the instability strip with further increase in metallicity. Therefore, although there are systems where the suggested population shift cannot be a viable explanation, for the most general cases, our models predict that the RR Lyraes are produced mostly by G1, G2, and G3, respectively, for the Oosterhoff groups I, II, and III.

  • PDF

DYNAMICAL EVOLUTION OF THE M87 GLOBULAR CLUSTER SYSTEM

  • Kim, Sung-Soo;Shin, Ji-Hye;Jin, Ho
    • 천문학회지
    • /
    • 제43권4호
    • /
    • pp.105-113
    • /
    • 2010
  • We study the dynamical evolution of the M87 globular cluster (GC) system using the most advanced and realistic Fokker-Planck (FP) model.By comparing our FP models with both mass function (MF) and radial distribution (RD) of the observed GC system, we find the best-fit initial (at M87's age of 2-3 Gyr) MF and RD for three GC groups: all GCs, blue GCs, and red GCs. We estimate the initial total mass in GCs to be $1.8^{+0.3}_{-0.2}{\times}10^{10}M_{\bigodot}$, which is about 100 times larger than that of the Milky Way GC system. We also find that the fraction of the total mass currently in GCs is 34\%. When blue and red GCs are fitted separately, blue GCs initially have a larger total mass and a shallower radial distribution than red GCs. If one assumes that most of the significant major merger events of M87 have ended by the age of 2-3 Gyr, our finding that blue (metal-poor) GCs initially had a shallower radial distribution supports the major merger scenario for the origin of metallicity bimodality.