• Title/Summary/Keyword: globular

Search Result 738, Processing Time 0.025 seconds

STUDY ON GRAVOTHERMAL OSCILLATIONS WITH TWO-COMPONENT FOKKER-PLANCK MODELS

  • KIM SUNGSOO S.;LEE HYUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.143-144
    • /
    • 1996
  • Two-component models (normal star and degenerate star components) are the simplest realization of clusters with a mass spectrum because the high mass stars quickly evolve off leaving degenerate stars behind, while low mass stars survive for a long time as main-sequence stars. In the present study we examine the post-collapse evolution of globular clusters using two-component Fokker-Planck models that include three-body binary heating. We confirm that a simple parameter ${\epsilon}{\equiv} (E_{tot}/t_{rh})/(E_c/t_{rc})$ well describes the occurrence of gravothermal oscillations of two-component clusters. Also, we find that the degree of instability depends on the steepness of the mass function such that clusters with a steeper mass function are less exposed to instability.

  • PDF

Building the Milky Way bulge from globular clusters: Evidence from low-resolution spectroscopy for the red clump stars

  • Hong, Seungsoo;Lim, Dongwook;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.77.4-78
    • /
    • 2017
  • The presence of double red clump (RC; metal-rich counterpart of horizontal-branch) in high latitude field of the Milky Way (MW) bulge is widely interpreted as evidence for an X-shaped structure originated from the bar instability. However, Lee et al. (2015) recently suggested an alternative model, according to which the double RC is metal-rich manifestation of multiple stellar population phenomenon observed in globular clusters (GCs). Here we show that stars in bright RC are enhanced in CN compared to those in faint RC from our low-resolution spectroscopy. CN traces N, and N-rich stars are also enhanced in Na and He in GCs. Since GCs are the only environment that produce second generation stars with enhanced N, Na, & He, this is a direct evidence that stars in the classical bulge component of the MW were mostly provided by proto-GCs.

  • PDF

Near-Infrared Color-Metallicity Relation for Globular Cluster System in Elliptical Galaxy NGC 4649

  • Jeong, Jong-Hoon;Kim, Sooyoung;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.76.2-76.2
    • /
    • 2017
  • We present Subaru Near-Infrared (NIR) photometry for globular clusters (GCs) in the giant elliptical galaxy NGC 4649 (M60) belonging to the Virgo cluster. NIR data are obtained in Ks-band with the Subaru/MOIRCS, and matching HST/ACS optical data available in literature are used to explore the origin of GC color bimodality. A clear bimodal color distribution is observed in the optical color (g-z), in which the ratio between blue and red GCs is 4:6. By contrast, the more metallicity-sensitive optical-NIR colors (g-Ks, z-Ks) show a considerably weakened bimodality in their distributions. The color-color relation of the optical and NIR colors for the GC system shows a nonlinear feature, supporting that the optical color bimodality observed in NGC 4649 GC system is caused by nonlinear color-metallicity relations (CMRs).

  • PDF

Induction Heating of a Billet for Semi-Solid Forging (반용융 단조를 위한 소재의 유도 가열)

  • 최재찬;박형진;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.670-674
    • /
    • 1997
  • Semi-solid forging is a compound forging technology to deventional forging process. Among several steps of semi-solid forging process, the heating step of a billet prior to semi-solid forging step is necessarily required to obtain globular microstructure. For the forming operation to work properly, it is also important to heat the billet uniformly for the uniformity of solid-liquid distribution. To satisfy these requirements, induction heating has been generally used for a long time. This paper presents the method to find heating condition and the temperature distribution inside of a billet with a induction heating apparatus by comparing the computer simulation with experiment for aluminum alloys Al2024 and A356.

  • PDF

Induction Heating of a Billet for Semi-Solid Forging (반용융 단조를 위한 소재의 유도 가열)

  • Park, J.C.;Park, H.J.;Kim, B.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.15-20
    • /
    • 1997
  • Semi-solid forging is a compound forging technology to develop conventional forging process. Among several steps of semi-solid forging process, the heating step of a billet prior to semi-solid forging step is necessarily required to obtain globular microstructure. For the forming operation to work properly, it is also important to heat the billet uniformly for the uniformity of solid-liquid distribution. To satisfy these requirements, induction heating has been generally used for a long time. This paper presents the method to find heating condition and the temperature distribution inside a billet with a induction heating apparatus by comparing the computer simulation with experiment for aluminium alloys A12024 and A356.

  • PDF

Optimization of Induction Coil Design for Reheating in Thixoforming Process (Thixoforming을 위한 재가열용 유도코일 설계의 최적화)

  • 김남석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.165-168
    • /
    • 1999
  • The coil design of induction heating systems and their optimization are of paramount importance for semi-solid processing(SSP) The authors of this paper present the coil design and optimization of a 60 Hz induction heating system for ALTHIX 86S (Al-6%_Si-3%Cu-0.3%Mg) alloy. An objective function on the basis of the optimization process for the coil design is proposed by introducing an optimization technique. Finally the results of the optimal coil design are also applied to the induction heating process to obtain a fine globular microstructure. The proposed new objective function based on the computational techniques would contribute to obtaining the thixoformed components with good mechanical properties and reducing lead time.

  • PDF

Induction Heating of Aluminum Alloys for Thixoforging (Thixoforging 공정을 위한 알루미늄 재료의 유도 가열)

  • 정홍규;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.107-112
    • /
    • 1998
  • The semi-solid materials(SSMs) fabricated under electric-magnetic stirring condition are necessary to be applicated in the thixoforging process. The optimal reheating conditions to thixoforging process were investigated with changing the reheating time, holding time, reheating temperatures, capacity, and adiabatic material size. In the case of solid fraction fs=50%, the microstructure of SSM (specimen size:d76X 190) at the condition of the first reheating time 4min, holding time lrnin and reheating temperature 350%, the second reheating time 3min, holding time 3min and reheating temperature 575C, the thlrd reheating time lmin, holding time 2min and reheating temperature 584'C, capacity Q=8.398KW, and adiabatic material size 53mm is obtained with globular microstructure and finest.

  • PDF

Heat Source Modeling of GMAW Considering Metal Transfer (용적이행을 고려한 GMA 용접의 열원 모델링)

  • 정기남;이지혜;이재영;유중돈
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.69-77
    • /
    • 2004
  • The Gaussian heat source has been widely used to simulate the heat flux of the welding we, and applied to calculating the temperature distribution of a workpiece. The conventional two-dimensional Gaussian heat source for the GMAW is modified in this work by decomposing the arc heat into heats of the cathode and metal transfer. The efficiency and effective arc radius of each heat source are determined analytically for the free-flight mode such as the globular and spray modes. The temperature distribution and weld geometry are calculated using the finite element method, and distribution of the drop heat is found to have significant effects on the penetration. The predicted results show good agreements with the available experimental results, especially with the penetration.

ALTERNATING DIRECTION IMPLICIT METHOD FOR TWO-DIMENSIONAL FOKKER-PLANCK EQUATION OF DENSE SPHERICAL STELLAR SYSTEMS

  • Shin, Ji-Hye;Kim, Sung-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.91-97
    • /
    • 2007
  • The Fokker-Planck (FP) model is one of the commonly used methods for studies of the dynamical evolution of dense spherical stellar systems such as globular clusters and galactic nuclei. The FP model is numerically stable in most cases, but we find that it encounters numerical difficulties rather often when the effects of tidal shocks are included in two-dimensional (energy and angular momentum space) version of the FP model or when the initial condition is extreme (e.g., a very large cluster mass and a small cluster radius). To avoid such a problem, we have developed a new integration scheme for a two-dimensional FP equation by adopting an Alternating Direction Implicit (ADI) method given in the Douglas-Rachford split form. We find that our ADI method reduces the computing time by a factor of ${\sim}2$ compared to the fully implicit method, and resolves problems of numerical instability.

Initial Size Distribution of the Milky Way Globular Clusters

  • Shin, Ji-Hye;Kim, Sung-Soo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.35.1-35.1
    • /
    • 2010
  • Unlike the initial mass function, the initial size distribution of globular cluster (GC) systems is not well known. We calculate the evolution of the mass function (MF), radial distribution (RD), and size distribution (SD) of the Galactic GC system. By comparing the results from this calculation and the present-day MF, RD, and SD of the Galactic GC system, we infer the initial SD of the GC system. We find that a Gaussian distribution of the half-mass radius and a Gaussian distribution of the half-mass to Jacobi radius ratio are the best-fit initial SDs of the Galactic GC system.

  • PDF