• Title/Summary/Keyword: global rice

Search Result 239, Processing Time 0.03 seconds

Variation of Days to Heading and Association Study for Different Location of Some Rice Genetic Resources

  • Tae-ho Ham;Mi-Young Park;So-Myeong Lee;Soon-Wook Kwon;Joohyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.265-265
    • /
    • 2022
  • Increased temperature caused by global warming has become a significant problem for the growth and production of crops. A high temperature has a direct or an indirect effect on crops, leading to a significant yield loss. The damage of a high temperature stress to rice depends on its developmental stage. In present study, we performed evaluate the heading date in different location, Yeoju and Miryang, during growth of Korean rice core set. The heading date for the 223 rice accession were evaluated in Yeoju City (37°23' 127°57') and Miryang City (35°50', 128°72') located on middle and southern part of Korea, respectively. The average temperature of a day was higher in Miryang during entire growth stage. Here, total 222 KRICE-Core set was analyzed by GWAS for the high temperature effect. GWAS results revealed the Chr07_26954556, a lead SNPs were significantly associated with delaying heading date of KRICE-Core set. Significance threshold was set with 6.0 > -log10(P), and Cross-Validation (CV) error suggested an optimal K value of 5 for the population based on the lowest cross-validation error K = 5.

  • PDF

Evaluation of Rice Nitrogen Utilization Efficiency under High Temperature and High Carbon Dioxide Conditions

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.168-168
    • /
    • 2022
  • According to the 5th Climate Change Report, global average temperature in 2081~2100 will increase 1.8℃ based on RCP 4.5 and 3.7℃ based on RCP 8.5 from the current climate value (IPCC Working Group I AR5). As temperature is expected to increase due to global warming and the intensity and frequency of rainfall are expected to increase, damage to crops is expected, and countermeasures must be taken. This study intends to evaluate rice growth in terms of nitrogen utilization efficiency according to future climate change conditions. In this experiment, Oryza sativa cv. Shindongjin were planted at the SPAR facility of the NICS in Wanju-gun, Jeollabuk-do on June 10, and were planted and grown according to the standard cultivation method. Cultivation conditions are high temperature, high CO2 (current temperature+4.7℃·CO2 800ppm), high temperature (current temperature+4.7℃·CO2 400ppm), current climate (current tempreture·CO2 400 ppm). Nitrogen was varied as 0, 9, 18 kg/10a. The N content and C/N ratio of all rice leaves, stems, and seeds increased at high temperature, and the N content and C/N ratio decreased under high temperature and high CO2 conditions com pared to high temperature. Compared to the current climate, NUE increases by about 8% under high temperature and high CO2 conditions and by about 2% under high temperature conditions. This seems to be because the increase in temperature and CO2 induced the increase in biomass. ANUE related to yield decreased by about 70% compared to the current climate under high temperature conditions, and decreased by about 45% at high temperature and high CO2, showing a tendency to decrease compared to high temperature. This appears to be due to reduced fertility and poor ripening due to high temperature stress. However, as the nitrogen increased, the number of ears and the number of grains increased, slightly offsetting the production reduction factor.

  • PDF

Physicochemical Properties and Sensory Evaluation of Brown Waxy Rice Yetgangjeong Prepared Using Different Sugar Types of Binders and End Heating Temperature (당종류와 최종가열온도가 다른 결착제로 제조한 찰현미 쌀엿강정의 물리화학적, 관능적 특성 변화)

  • No, JunHee;Kim, Hyun Jin;Choi, Eun Ok;Lee, Kyong Ae;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.30 no.4
    • /
    • pp.463-471
    • /
    • 2014
  • Yetgangjeong is a traditional Korean rice cookie which used rice syrup (Chocheong) to bind fried rice grains. Brown waxy rice and binders prepared using different sugar types and end heating temperatures were assessed to improve the textural properties and functionality and to promote global consumption. Binder was made by mixing different ratios of starch syrup, rice syrup, honey, sugar, and trehalose, and the binder mixture was heated up to a temperature of $100^{\circ}C$ or $105^{\circ}C$. Specific electrical conductivity of binder containing ST (starch syrup and trehalose) showed the lowest values (9.51 and 9.77), and binders containing the rice syrup showed increased values for specific electrical conductivity. The fructose content was higher in the binder mixture containing C (starch syrup and sugar) than in the binder mixture containing ST, but it did not affect the end temperature. Viscosity of the binder was 123.90-175.20 cP and the binder showed higher viscosity at the end heating temperature (EHT) of $100^{\circ}C$ compared at EHT of $105^{\circ}C$. The fracturability of brown rice yetgangjeong prepared using different sugar types was higher at EHT of $100^{\circ}C$ than at that of $105^{\circ}C$ and it was reduced with an increase in the rice syrup content. However, the hardness of yetgangjeong was lower at $100^{\circ}C$, unlike fracturability. With respect to sensory evaluation, its moistness and stickiness decreased, but the crunchiness increased with addition of trehalose instead of sucrose. The overall eating quality score of yetgangjeong was higher at EHT of $105^{\circ}C$ than at that of $100^{\circ}C$ in every experiment and the highest score was found for SHT (starch syrup, honey and trehalose) with 20% rice syrup at EHT of $105^{\circ}C$ (20%RSHT105 (starch syrup, honey, and trehalose containing 20% rice syrup)).

Impacts of Climate Change and Follow-up Cropping Season Shift on Growing Period and Temperature in Different Rice Maturity Types (미래 기후변화 및 그에 따른 재배시기 조정이 벼 생태형별 생육기간과 생육온도에 미치는 영향)

  • Lee, Chung-Kuen;Kwak, Kang-Su;Kim, Jun-Hwan;Son, Ji-Young;Yang, Won-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.233-243
    • /
    • 2011
  • This experiment was conducted to investigate the effect of future climate change on growing period and temperature in different rice maturity types as global warming progressed, where Odaebyeo, Hwaseongbyeo, Ilpumbyeo were used as a representative cultivar of early, medium, and medium-late rice maturity type, respectively, and A1B scenario was applied to weather data for future climate change at 57 sites in Korea. When cropping season was not adjusted to climate change, entire growing period and growing temperature were shorten and risen, respectively, as global warming progressed. On the other side, when cropping season was adjusted to climate change, growing period and temperature after heading date were not changed in contrast to growing period and growing temperature before heading which were more seriously shortened and risen as global warming progressed than in not adjusted cropping season. It is supposed that adjusting cropping season to climate change can alleviate rice yield reduction and quality deterioration to some degree by improving growing temperature condition during grain-filling period, but also still have a limit such as seriously shortened growing period indicating that there need to develope actively new rice cultivation methods and varieties for future climate change.

Climate Change and Its Impact on Agricultural Ecosystem (기후변화에 따른 농업생태계 변동과 대책)

  • Yun Seong Ho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1998.10a
    • /
    • pp.313-335
    • /
    • 1998
  • If the atmospheric concentrations of greenhouse gases double, the annual temperature increase in mean surface temperature relative to 1990 will be about 2.0 to $2.5^{\circ}C$ and the annual precipitation increase about $15{\%}$ by 2100 in Korea. When the temperature rises $2^{\circ}C$, the annual temperature will be $13^{\circ}C,\;15^{\circ}C,\;and\;16^{\circ}C$ in Western Central, Yeongnam Basin, and Southern Coastal respectively. Consequently the crop period could be prolonged $10{\~}29$ days. In the case of gradual global warming, annual crops could be adapted to the changed environment by breeding, and the perennial crops should be shifted to ether area. If global warming happens suddenly over the threshold of atmospheric greenhouse gases concentration, then we shall have disturbance of ecosystem. When $2^{\circ}C$ higher than present, the optimum flowering date of rice plant delayed about 10 days, so it may not possible to adopt the fate with present japonica rices, therefore, the recommended characteristics of rice varieties are longer basic vegetative period, more late maturing and higher ripening temperature. Barley and wheat crops could be shifted to northern coastal areas and apple production areas should be shifted to those areas under $13.5^{\circ}C$ in annual mean temperature at global warming. Ideotypes of crops under climate changes should have such ecological characteristics that are indispensable to accomplish the sustainable agriculture under increased $CO_{2}$ and temperature condition as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with the higher potentials of $CO_{2}$ absorption and Primary production. In addition, a heat-tolerance, a pest resistance, an environmental adaptability and a production stability should be also incorporated collectively into our integrated agroecosystem.

  • PDF

Optimization of Storage Tank Installation Locations for Pipeline Water Supply Using Genetic Algorithm (유전자 알고리즘을 이용한 관수 저류조의 공간배치 최적화)

  • Hong, Rokgi;Park, Jinseok;Jang, Seongju;Lee, Hyeokjin;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.43-53
    • /
    • 2022
  • Rice paddy has been actively converted into upland crop fields as more profitable upland crop cultivation are encouraged along with the decrease in rice consumption. However, the current water supply system remains mainly for paddy water supply, so research on pipeline water supply for upland cultivation is needed. The objective of this study was to optimize storage tank installation locations for pipeline water supply in reservoir irrigation districts. Five of reservoir irrigation districts were selected as the study sites and gridded of 10×10 m in size. Then genetic algorithm was adopted to evaluate the effects of spatial storage tank allocation on total pipeline cost. The lengths of the main and branch pipelines were considered as the objective cost function for the optimization of storage tank installation. Overall the shorter the branch pipeline and the longer the main pipeline, as the number of storage tanks increase. The minimal pipeline cost, i.e., optimal condition was reached when approximately 10% of the storage tank numbers to total upland plots were installed. The methodology presented in this study can be applied to determine the number and spatial arrangement of storage tanks for upland pipeline irrigation system design.

Estimation of Crop Yield and Evapotranspiration in Paddy Rice with Climate Change Using APEX-Paddy Model (APEX-Paddy 모델을 이용한 기후변화에 따른 논벼 생산량 및 증발산량 변화 예측)

  • Choi, Soon-Kun;Kim, Min-Kyeong;Jeong, Jaehak;Choi, Dongho;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.27-42
    • /
    • 2017
  • The global rise in atmospheric $CO_2$ concentration and its associated climate change have significant effects on agricultural productivity and hydrological cycle. For food security and agricultural water resources planning, it is critical to investigate the impact of climate change on changes in agricultural productivity and water consumption. APEX-Paddy model, which is the modified version of APEX (Agricultural Policy/Environmental eXtender) model for paddy ecosystem, was used to evaluate rice productivity and evapotranspiration based on climate change scenario. Two study areas (Gimjae, Icheon) were selected and the input dataset was obtained from the literature. RCP (Representitive Concentration Pathways) based climate change scenarios were provided by KMA (Korean Meteorological Administration). Rice yield data from 1997 to 2015 were used to validate APEX-Paddy model. The effects of climate change were evaluated at a 30-year interval, such as the 1990s (historical, 1976~2005), the 2025s (2011~2040), the 2055s (2041~2070), and the 2085s (2071~2100). Climate change scenarios showed that the overall evapotranspiration in the 2085s reduced from 10.5 % to 16.3 %. The evaporations were reduced from 15.6 % to 21.7 % due to shortend growth period, the transpirations were reduced from 0.0% to 24.2 % due to increased $CO_2$ concentration and shortend growth period. In case of rice yield, in the 2085s were reduced from 6.0% to 25.0 % compared with the ones in the 1990s. The findings of this study would play a significant role as the basics for evaluating the vulnerability of paddy rice productivity and water management plan against climate change.

Comparative proteome analysis of rice leaves in response to high temperature

  • Kim, Sang-Woo;Roy, Swapan Kumar;Kwon, Soo Jeong;Cho, Seong-Woo;Cho, Yong-Gu;Lee, Chul-Won;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.121-121
    • /
    • 2017
  • The productivity of rice has been influenced by various abiotic factors including temperature which cause to limitations to rice yield and quality. Rice yield and quality are adversely affected by high temperature globally. In the present study, four Korean four cultivars such as Dongan, Ilpum, Samkwang, Chucheong were investigated in order to explore molecular mechanisms of high temperature at seedling stage. Rice seedlings grown at $28/20^{\circ}C$ (day/night) were subjected to 7-day exposure to $38/28^{\circ}C$ for high-temperature stress, followed by 2-D based proteomic analysis on biological triplicates of each treatment. The growth characteristics demonstrated that Dongan is tolerant while Ilpum is sensitive to high-temperature stress. High temperature has an adverse effect in the seedling stage both in high temperature sensitive and tolerant cultivar. Two-dimensional gels stained with silver staining, a total of 722 differential expressed protein spots (${\geq}1.5-fold$) were identified using Progenesis SameSpot software. However, a total of 38 differentially expressed protein spots were analyzed by LTQ-FT-ICR MS. Of these, 9 proteins were significantly increased while 10 decreased under high-temperature treatment. Significant changes were associated with the proteins involved in the carbohydrate metabolism, photosynthesis, and stress responses. Proteome results revealed that high-temperature stress had an inhibitory effect on carbon fixation, ATP production, and photosynthetic machinery pathway. The expression level of mRNA is significantly correlated with the results obtained in the proteome investigation. Taken together, these findings provide a better understanding of the high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch.

  • PDF

Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan (파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF

Effects of organic amendments on lettuce (Lactuca sativa L.) growth and soil chemical properties in acidic and non-acidic soils

  • Yun-Gu Kang;Jun-Yeong Lee;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.713-721
    • /
    • 2023
  • Soil acidification challenges global food security by adversely influences soil fertility and agricultural productivity. Carbonized agricultural residues present a sustainable and ecofriendly way to recycle agricultural waste and mitigate soil acidification. We evaluated the effects of organic amendments on lettuce growth and soil chemical properties in two soils with different pH levels. Carbonized rice husk was produced at 600℃ for 30 min and rice husk was treated at 1% (w·w-1). Carbonized rice husk increased soil pH, electrical conductivity, total carbon content, and nitrogen content compared with untreated and rice husk treatments. Furthermore, this study found that lettuce growth positively correlated with soil pH, with increasing soil pH up to pH 6.34 resulting in improved lettuce growth parameters. Statistical correlation analysis also supported the relationship between soil pH and lettuce growth parameters. The study findings showed that the use of carbonized rice husk increased the constituent elements of lettuce, such as carbon, nitrogen, and phosphate content. The potassium content of lettuce followed a similar trend; however, was higher in acidic soil than that in non-acidic soil. Therefore, improving the pH of acidic soil is essential to enhance agricultural productivity. It is considered advantageous to use agricultural residues following pyrolysis to improve soil pH and agricultural productivity.