• Title/Summary/Keyword: global positioning system (GPS) measurement

Search Result 171, Processing Time 0.032 seconds

Development of a Combined GPS/GLONASS PPP Method

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Precise Point Positioning (PPP) is a stand-alone precise positioning approach. As the quality of satellite orbit and clock products from analysis centers has been improved, PPP can provide more precise positioning accuracy and reliability. A combined use of Global Positioning System (GPS) and Global Orbiting Navigation Satellite System (GLONASS) in PPP is now available. In this paper, we explained about an approach for combined GPS and GLONASS PPP measurement processing, and validated the performance through the comparison with GPS-only PPP results. We also used the measurement obtained from the GRAS reference station for the performance validation. As a result, we found that the combined GPS/GLONASS PPP can yield a more precise positioning than the GPS-only PPP.

The Study about Accuracy Kinematic GPS Survey (정확한 동적 GPS 측량에 관한 연구)

  • 박운용;이종출;이인수;나종기
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.45-49
    • /
    • 2004
  • The Navstar Global Positioning System(GPS) is an advanced navigation satelite system for determination of position, velocity and time. It can provide three-dimensional positioning on a global basis, independent of weather, 24 hours per day. Test results show that the carrier phase and pseudorange corrections are suitable for a kinematic GPS system. Using these corrections are more effective than using raw GPS data, since fewer bits are required for transmission Additionally, the number of computation required at the rover is reduced when corrections, rather than raw measurement are transmitted

  • PDF

GPS Application for the Digital Map Construction of Irrigation Canal Networks

  • Choi, Jin-Yong;Yoon, Kwang-Sik;Kim, Jong-Ok
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.9-16
    • /
    • 2000
  • GPS(Global Positioning System) surveying is an effective method using satellite measurement system and can be applied to construction of digital map of irrigation canal networks. In this study, GPS surveying method for irrigation structures was developed. A selected main canal of an irrigation district were surveyed by GPS. The obtained surveying results were corrected by post-processed DGPS (Differential Global Positioning System) and imported to GIS for the digital map construction.

  • PDF

The Design and Implementation of Location Information System using Wireless Fidelity in Indoors (실내에서 Wi-Fi를 이용한 위치 정보 시스템의 설계 및 구현)

  • Kwon, O-Byung;Kim, Kyeong-Su
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.243-249
    • /
    • 2013
  • In this paper, GPS(Global Positioning System) that can be used outdoors and GPS(Global Positioning System) is not available for indoor Wi-Fi(Wireless Fidelity) using the Android-based location information system has been designed and implemented. Pedestrians in a room in order to estimate the location of the pedestrian's position, regardless of need to obtain the absolute position and relative position, depending on the movement of pedestrians in a row it is necessary to estimate. In order to estimate the initial position of the pedestrian Wi-Fi Fingerprinting was used. Most existing Wi-Fi Fingerprinting position error small WKNN(Weighted K Nearest Neighbor) algorithm shortcoming EWKNN (Enhanced Weighted K Nearest Neighbor) using the algorithm raised the accuracy of the position. And in order to estimate the relative position of the pedestrian, the smart phone is mounted on the IMUInertial Measurement Unit) because the use did not require additional equipment.

A Study on Enhancing Outdoor Pedestrian Positioning Accuracy Using Smartphone and Double-Stacked Particle Filter (스마트폰과 Double-Stacked 파티클 필터를 이용한 실외 보행자 위치 추정 정확도 개선에 관한 연구)

  • Kwangjae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2023
  • In urban environments, signals of Global Positioning System (GPS) can be blocked and reflected by tall buildings, large vehicles, and complex components of road network. Therefore, the performance of the positioning system using the GPS module in urban areas can be degraded due to the loss of GPS signals necessary for the position estimation. To deal with this issue, various localization schemes using inertial measurement unit (IMU) sensors, such as gyroscope and accelerometer, and Bayesian filters, such as Kalman filter (KF) and particle filter (PF), have been designed to enhance the performance of the GPS-based positioning system. Among Bayesian filters, the PF has been widely used for the target tracking and vehicle navigation, since it can provide superior performance in estimating the state of a dynamic system under nonlinear/non-Gaussian circumstance. This paper presents a positioning system that uses the double-stacked particle filter (DSPF) as well as the accelerometer, gyroscope, and GPS receiver on the smartphone to provide higher pedestrian positioning accuracy in urban environments. The DSPF employs a nonparametric technique (Parzen-window) to create the multimodal target distribution that approximates the posterior distribution. Experimental results show that the DSPF-based positioning system can provide the significant improvement of the pedestrian position estimation in urban environments.

  • PDF

A case study of the technology of measurement system using Global Positioning System(GPS) for high-rise buildings (GPS를 이용한 초고층 시공 측량 기술)

  • Kang, Seon-Chong;Kang, Kyoung-Tae
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.187-193
    • /
    • 2006
  • With the development of technology the Global Positioning System(GPS) measurement method which uses the artificial satellites to locate its position has been adopted in construction projects. Especially in civil engineering projects which have not any base points needed to measure their position they use the GPS measurement method has been put to practical use. But it was still difficult to use that method in building construction sites which require more accurate measurement data than the current GPS measurement method can provide. In this paper we introduce a new GPS measurement method adopted in Burj Dubai project which would be the tallest building in the world after its completion.

  • PDF

An Integrated Navigation System Combining INS and Ultrasonic-Speedometer to Overcome GPS-denied Area (GPS 음영 지역 극복을 위한 INS/초음파 속도계 결합 항법 시스템 설계)

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, La-Woo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • Recently, multi-sensor integration techniques have been actively studied to obtain reliable and accurate navigation solution in GPS (Global Positioning System)-denied harsh environments such as urban canyons, tunnels, and underground roads. In this paper, we propose a low-cost ultrasonic-speedometer utilizing the characteristics of the ultrasonic propagation. An efficient integrated INS (inertial navigation system)/ultrasonic-speedometer navigation system is also proposed to improve the accuracy of positioning in GPS-denied environments. To evaluate the proposed system, car experiments with field-collected measurements were performed. By the experiment results, it was confirmed that the proposed INS/ultrasonic-speedometer system bounds the positioning error growth effectively even though GPS signal is blocked more than 10 seconds and a low-cost MEMS IMU (micro electro mechanical systems inertial measurement unit) is utilized.

Quality Monitoring Comparison of Global Positioning System and BeiDou System Received from Global Navigation Satellite System Receiver

  • Son, Eunseong;Im, Sung-Hyuck
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, we implemented the data quality monitoring algorithm which is the previous step for real-time Global Navigation Satellite System (GNSS) correction generation and compared Global Positioning System (GPS) and BeiDou System (BDS). Signal Quality Monitoring (SQM), Data QM, and Measurement QM (MQM) that are well known in Ground Based Augmentation System (GBAS) were used for quality monitoring. SQM and Carrier Acceleration Ramp Step Test (CARST) of MQM result were divided by satellite elevation angle and analyzed. The data which are judged as abnormal are removed and presented as Root Mean Square (RMS), standard deviation, average, maximum, and minimum value.

Study on Applying GPS Positioning Technique to Cannon Laying (GPS 측위기술의 포 방열 적용 연구)

  • 조정호;박종욱;박필호;임형철;최만수;권영철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.52-59
    • /
    • 2001
  • In this paper, we have proposed a capability of applying Global Positioning System(GPS) to cannon laying. High precision GPS positioning can be used for measuring precise positions and angles. Therefore, we have tested on applying GPS positioning technique to measurement of positions and angles, which related to cannon laying. First of all, we have determined a GPS reference position using various positioning methods. Then we have carried out several tests that are process of taking corner angles between neighboring two vectors. Each vector can be calculated by post/real time positioning of two GPS antennas placed on the both ends of the howitzer. The Comer Angles from Post processing(CAP) are compared with the other Corner Angles from Real time positioning(CAR). As the results, we have an agreement between CAP and CAR within 0.25 mil average, 0.29 mil standard deviation. Finally, we have discussed about the capabilities and problems in artillery arrangement using GPS.

  • PDF

The accuracy decision for longitude and latitude of GPS receiver using fuzzy algorithm

  • Yi, Kyung-Woong;Choi, Han-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2382-2386
    • /
    • 2003
  • The Global Positioning System(GPS) is a satellite based precise positioning system avaliable worldwide. The GPS have many error sources. The earth's ionosphere and atmosphere cause delays in the GPS signal that translate into position errors. Some errors can be factored out using mathematics and modeling. The configuration of the satellites in the sky can magnify other errors. The problem of accuracy on GPS measurement data can be meaningful. In this study, we propose the method for GPS positioning accuracy improvement. The FUZZY set theory on PDOP(Position Dilution of Precision) and SNR(Signal to Noise Ratio) provide improved for measured positioning data. The accuracy of positioning has been improved by selecting data from original using the FUZZY set theory on PDOP and SNR.

  • PDF