• Title/Summary/Keyword: global positioning system (GPS)

Search Result 976, Processing Time 0.035 seconds

The accuracy decision for longitude and latitude of GPS receiver using fuzzy algorithm

  • Yi, Kyung-Woong;Choi, Han-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2382-2386
    • /
    • 2003
  • The Global Positioning System(GPS) is a satellite based precise positioning system avaliable worldwide. The GPS have many error sources. The earth's ionosphere and atmosphere cause delays in the GPS signal that translate into position errors. Some errors can be factored out using mathematics and modeling. The configuration of the satellites in the sky can magnify other errors. The problem of accuracy on GPS measurement data can be meaningful. In this study, we propose the method for GPS positioning accuracy improvement. The FUZZY set theory on PDOP(Position Dilution of Precision) and SNR(Signal to Noise Ratio) provide improved for measured positioning data. The accuracy of positioning has been improved by selecting data from original using the FUZZY set theory on PDOP and SNR.

  • PDF

GPS AOA Choosing Algorithm in Environment of High-Power Interference Signals (고 전력 간섭 환경에서의 GPS AOA 선택 알고리즘)

  • Hwang, Suk-Seung
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.649-656
    • /
    • 2012
  • The Global Positioning System (GPS) is widely utilized for commercial and military applications to estimate the location of the user or object. The GPS suffers from various intentional or unintentional interferers and it requires estimating the accurate angle-of-arrival (AOA) of the GPS signal to suppress interference signals and to efficiently detect GPS data. Since the power of GPS signal is very low comparing with the noise and interference signals, it is extremely difficult to estimate GPS AOA before despreading. Although AOA of GPS signal is usually estimated after despreading, it requires choosing the GPS AOA among results of AOA estimation because they include AOAs of interference and GPS signals when existing high-power interferers. In this paper, we propose the efficient choosing algorithm of the GPS signal among the estimated AOAs. The proposed algorithm compares the estimated results before despreading and after despreading for choosing AOA of GPS signal. Computer simulation examples are presented to illustrate the performance of the proposed algorithm.

Analysis of Multi-Differential GNSS Positioning Accuracy in Various Signal Reception Environments

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 2018
  • This study analyzed positioning accuracy of the multi-differential global navigation satellite system (DGNSS) algorithm that integrated GPS, GLONASS, and BDS. Prior to the analysis, four sites of which satellite observation environment was different were selected, and satellite observation environments for each site were analyzed. The analysis results of the algorithm performance at each of the survey points showed that high positioning performance was obtained by using DGPS only without integration of satellite navigation systems in the open sky environment but the positioning performance of multi-DGNSS became higher as the satellite observation environments degraded. The comparison results of improved positioning performance of the multi-DGNSS at the poor reception environment compared to differential global positioning system (DGPS) positioning results showed that horizontal accuracy was improved by 78% and vertical accuracy was improved by 65% approximately.

Study on INS/GPS Sensor Fusion for Agricultural Vehicle Navigation System (농업기계 내비게이션을 위한 INS/GPS 통합 연구)

  • Noh, Kwang-Mo;Park, Jun-Gul;Chang, Young-Chang
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.423-429
    • /
    • 2008
  • This study was performed to investigate the effects of inertial navigation system (INS) / global positioning system (GPS) sensor fusion for agricultural vehicle navigation. An extended Kalman filter algorithm was adopted for INS/GPS sensor fusion in an integrated mode, and the vehicle dynamic model was used instead of the navigation state error model. The INS/GPS system was consisted of a low-cost gyroscope, an odometer and a GPS receiver, and its performance was tested through computer simulations. When measurement noises of GPS receiver were 10, 1.0, 0.5, and 0.2 m ($1{\sigma}$), RMS position and heading errors of INS/GPS system at 5 m/s straight path were remarkably reduced with 10%, 35%, 40%, and 60% of those obtained from the GPS receiver, respectively. The decrease of position and heading errors by using INS/GPS rather than stand-alone GPS can provide more stable steering of agricultural equipments. Therefore, the low-cost INS/GPS system using the extended Kalman filter algorithm may enable the self-autonomous navigation to meet required performance like stable steering or more less position errors even in slow-speed operation.

Deisgn and Implementation of RTK-GPS Error Correction Signal Transmission System for Long-Distance using the TCP/IP (TCP/IP를 이용한 RTK-GPS 보정 신호 장거리 전송 시스템의 설계 및 구현)

  • Jo, Ik-Seong;Im, Jae-Hong
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.127-134
    • /
    • 2002
  • GPS is one of today's most widely used surveying techniques. But, users can't acquire an enough accuracy in applications of the navigation or geodesy by the GPS positioning technique because of the effects of the ionosphere and troposphere and US DoD's systematic errors. The solution of these restrictions is the DGPS technique that is to eliminate the common errors and can achieve a high accuracy. Although of sufficient density for good DGPS, accuracy of positioning is just not dense enough to provide complete coverage for real-time positioning, because distances between base and rover is short. In this paper, we designed and implemened a RTK-GPS error correction signal transmission system for long-distance using the TCP/IP, which consist of TCP, UDP and IP, which allows a user to increase the distance at which the rover receiver is located from the base, due to radio modem.

High Accurate and Efficient Positioning in Urban Areas Using GPS and Pseudolites Integration

  • SUH, Yong-Cheol;SHIBASAKI, Ryosuke
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 2002
  • The Global Positioning System technology has been widely used in positioning and attitude determination. It is well known that the accuracy, availability and reliability of the positioning results are heavily dependent on the number and geometric distribution of tracked GPS satellites. Because of this limitation, in some situations, such as in urban canyons, underground or inside of buildings, it is difficult to navigate with GPS receiver. Therefore, in order to improve the performance of satellite-based positioning, the integration of GPS with the pseudolite technology has been proposed. With this pseudolite technology, it is expected that seamless positioning service can be provided in a wider area without replacing existing GPS receivers. On the other hand, to adopt pseudolites on a larger scale, it is necessary to verify how the pseudolites may complement the existing GPS-based positioning. In this paper the authors present the details of the experiments and the results of the fundamental verification for seamless positioning using integration of GPS and pseudolite. This paper shows that the accuracy and efficiency of integrating GPS and pseudolite through the dynamic and static positioning experiment. The influence of pseudolite signal on GPS receiver is also discussed. The experimental results indicate that the accuracy of the height component can indeed be significantly improved, to approximately the same level as the horizontal component.

  • PDF

Long Baseline GPS RTK with Estimating Tropospheric Delays

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • The real-time kinematic (RTK) is one of precise positioning methods using Global Positioning System (GPS) data. In the long baseline GPS RTK, the ionospheric and tropospheric delays are critical factors for the positioning accuracy. In this paper we present RTK algorithms for long baselines more than 100 km with estimating tropospheric delays. The state vector is estimated by the extended Kalman filter. We show the experimental results of GPS RTK for various baselines (162.10, 393.37, 582.29, and 1283.57 km) by using the Korea Astronomy and Space Science Institute GPS data and one International GNSS Service (IGS) reference station located in Japan. As a result, we present that long baseline GPS RTK can provide the accurate positioning for users less than few centimeters.

A Performance of Positioning Accuracy Improvement Scheme using Wavelet Denoising Filter (Wavelet Denoising Filter를 이용한 측위 정밀도 향상 기법 성능)

  • Shin, Dong Soo;Park, Ji Ho;Park, Young Sik;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2014
  • Recently, precision guided munition systems and missile defense systems based on GPS have been taking a key role in modern warfare. In warfare however, unexpected interferences cause by large/small scale fading, radio frequency interferences, etc. These interferences result in a severe GPS positioning error, which could occur late supports and friendly fires. To solve the problems, this paper proposes an interference mitigation positioning method by adopting a wavelet denoising filter algorithm. The algorithm is applied to a GPS/QZSS/Wi-Fi combined positioning system which was performed by this laboratory. Experimental results of this paper are based on a real field test data of a GPS/QZSS/Wi-Fi combined positioning system and a simulation data of a wavelet denoising filter algorithm. At the end, the simulation result demonstrates its superiority by showing a 21.6% improved result in comparison to a conventional GPS system.

Long-term Analysis of Availability and Accuracy Variation of GPS Ionospheric Delay Model (GPS 전리층 모델의 장기간 가용성 및 정확도 변화 분석)

  • Jeongrae Kim;Yongrae Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.841-848
    • /
    • 2023
  • The Klobuchar ionospheric model included in global positioning system (GPS) navigation messages provides ionospheric correction information to single-frequency users. This ionospheric model accuracy has a significant impact on the accuracy of navigation solutions. We examine the GPS navigation messages from 1993 to 2022 and analyze their accuracy, presence of coefficients and accuracy of the Klobuchar model. Early GPS navigation messages often did not include ionospheric data, and even when they did include ionospheric models, the accuracy was often quite low. From 2002, when the accuracy of the ionospheric model was stabilized, until 2022, the accuracy of the ionospheric model is analyzed by comparing it with the ionospheric model of the International GNSS Service (IGS). Changes in accuracy per day and per year and accuracy differences along geomagnetic latitude are analyzed.

Performance Enhancement and Countermeasure for GPS Failure of GPS/INS Navigation System of UAV Through Integration of 3D Magnetic Vector

  • No, Heekwon;Song, Junesol;Kim, Jungbeom;Bae, Yonghwan;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.155-163
    • /
    • 2018
  • This study examined methods to enhance navigation performance and reduce the divergence of navigation solutions that may occur in the event of global positioning system (GPS) failure by integrating the GPS/inertial navigation system (INS) with the three-dimensional (3D) magnetic vector measurements of a magnetometer. A magnetic heading aiding method that employs a magnetometer has been widely used to enhance the heading performance in low-cost GPS/INS navigation systems with insufficient observability. However, in the case of GPS failure, wrong heading information may further accelerate the divergence of the navigation solution. In this study, a method of integrating the 3D magnetic vector measurements of a magnetometer is proposed as a countermeasure for the case where the GPS fails. As the proposed method does not require attitude information for integration unlike the existing magnetic heading aiding method, it is applicable even in case of GPS failure. In addition, the existing magnetic heading aiding method utilizes only one-dimensional information in the heading direction, whereas the proposed method uses the two-dimensional attitude information of the magnetic vector, thus improving the observability of the system. To confirm the effect of the proposed method, simulation was performed for the normal operation and failure situation of GPS. The result confirmed that the proposed method improved the accuracy of the navigation solution and reduced the divergence speed of the navigation solution in the case of GPS failure, as compared with that of the existing method.