• Title/Summary/Keyword: global networks

Search Result 883, Processing Time 0.027 seconds

KoFlux's Progress: Background, Status and Direction (KoFlux 역정: 배경, 현황 및 향방)

  • Kwon, Hyo-Jung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.241-263
    • /
    • 2010
  • KoFlux is a Korean network of micrometeorological tower sites that use eddy covariance methods to monitor the cycles of energy, water, and carbon dioxide between the atmosphere and the key terrestrial ecosystems in Korea. KoFlux embraces the mission of AsiaFlux, i.e. to bring Asia's key ecosystems under observation to ensure quality and sustainability of life on earth. The main purposes of KoFlux are to provide (1) an infrastructure to monitor, compile, archive and distribute data for the science community and (2) a forum and short courses for the application and distribution of knowledge and data between scientists including practitioners. The KoFlux community pursues the vision of AsiaFlux, i.e., "thinking community, learning frontiers" by creating information and knowledge of ecosystem science on carbon, water and energy exchanges in key terrestrial ecosystems in Asia, by promoting multidisciplinary cooperations and integration of scientific researches and practices, and by providing the local communities with sustainable ecosystem services. Currently, KoFlux has seven sites in key terrestrial ecosystems (i.e., five sites in Korea and two sites in the Arctic and Antarctic). KoFlux has systemized a standardized data processing based on scrutiny of the data observed from these ecosystems and synthesized the processed data for constructing database for further uses with open access. Through publications, workshops, and training courses on a regular basis, KoFlux has provided an agora for building networks, exchanging information among flux measurement and modelling experts, and educating scientists in flux measurement and data analysis. Despite such persistent initiatives, the collaborative networking is still limited within the KoFlux community. In order to break the walls between different disciplines and boost up partnership and ownership of the network, KoFlux will be housed in the National Center for Agro-Meteorology (NCAM) at Seoul National University in 2011 and provide several core services of NCAM. Such concerted efforts will facilitate the augmentation of the current monitoring network, the education of the next-generation scientists, and the provision of sustainable ecosystem services to our society.

Impact of Corporate Entrepreneurship, Human Resource Innovation on the Firms' Innovation Activities and Nonfinancial Performance: A Exploratory Research of KOSDAQ Companies (사내기업가정신, 인적자원혁신성이 기업혁신활동과 비재무적 성과에 미치는 영향에 관한 탐색적 연구)

  • Hwangbo, Yun;Bae, Kun Seok
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.12 no.4
    • /
    • pp.1-14
    • /
    • 2017
  • New business management methods different from the past are necessary because of the rapid changes of the corporates' environment. KOSDAQ(Korean Securities Dealers Automated Quotation) companies should be expected the more affirmative business performance of companies by listing, but it is a well-known that they have problems of low business performance mostly. This paper aims to investigate the influential factors on enhancing corporate innovation and nonfinantial business performance, and to clarify practical measures and present a solution of KOSDAQ companies' problems through analysis of previous researches and an empirical research. This research present corporate entrepreneurship and human resources innovation as impact factors on the business performance to apply finely the path of technological innovation for the solution of the relevance investigation limit between the complexity of corporates' innovation paths and the firms' performance. And also knowledge management activities and external networks management or the firms have been adopted as a corporate innovation activities for free from quantitative measures, such as conventional research and development(R&D) activities by considering recent corporates' knowledge business operations. The results of the empirical analysis shows that significant impact factors on corporate innovation activities are the firms' propensities of competitive advantage initiative, risk taking and chief executive officer's innovation. These can be interpreted that the CEOs' innovation propensity should be enhanced for stimulating corporate's innovaton activities, which include the CEOs' interest in the development of new technology, the exploiting new businesses and their support of the innovation discipline for employees. In addition, it can be said that it is necessary to intensify more initiatives within those enterprise for enhancing the competitive advantage in the identical industry. The significant impact factors of corporate entrepreneurship and human resource innovation on the non-financial performance are resulted as the propensities of firms' competitive advantage initiative, CEOs' innovation and employees' innovaton. This shows that the higher propensities of firms' competitive advantage initiative, CEOs' innovation and employees' innovaton, the higher the cognitive degrees of business performance within each corporate, which include the members' awareness about firms' sales growth, market share growth, profit ratio growth, customers' preference and corporates' awareness.

  • PDF

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

Analysis of News Agenda Using Text mining and Semantic Network Analysis: Focused on COVID-19 Emotions (텍스트 마이닝과 의미 네트워크 분석을 활용한 뉴스 의제 분석: 코로나 19 관련 감정을 중심으로)

  • Yoo, So-yeon;Lim, Gyoo-gun
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.47-64
    • /
    • 2021
  • The global spread of COVID-19 around the world has not only affected many parts of our daily life but also has a huge impact on many areas, including the economy and society. As the number of confirmed cases and deaths increases, medical staff and the public are said to be experiencing psychological problems such as anxiety, depression, and stress. The collective tragedy that accompanies the epidemic raises fear and anxiety, which is known to cause enormous disruptions to the behavior and psychological well-being of many. Long-term negative emotions can reduce people's immunity and destroy their physical balance, so it is essential to understand the psychological state of COVID-19. This study suggests a method of monitoring medial news reflecting current days which requires striving not only for physical but also for psychological quarantine in the prolonged COVID-19 situation. Moreover, it is presented how an easier method of analyzing social media networks applies to those cases. The aim of this study is to assist health policymakers in fast and complex decision-making processes. News plays a major role in setting the policy agenda. Among various major media, news headlines are considered important in the field of communication science as a summary of the core content that the media wants to convey to the audiences who read it. News data used in this study was easily collected using "Bigkinds" that is created by integrating big data technology. With the collected news data, keywords were classified through text mining, and the relationship between words was visualized through semantic network analysis between keywords. Using the KrKwic program, a Korean semantic network analysis tool, text mining was performed and the frequency of words was calculated to easily identify keywords. The frequency of words appearing in keywords of articles related to COVID-19 emotions was checked and visualized in word cloud 'China', 'anxiety', 'situation', 'mind', 'social', and 'health' appeared high in relation to the emotions of COVID-19. In addition, UCINET, a specialized social network analysis program, was used to analyze connection centrality and cluster analysis, and a method of visualizing a graph using Net Draw was performed. As a result of analyzing the connection centrality between each data, it was found that the most central keywords in the keyword-centric network were 'psychology', 'COVID-19', 'blue', and 'anxiety'. The network of frequency of co-occurrence among the keywords appearing in the headlines of the news was visualized as a graph. The thickness of the line on the graph is proportional to the frequency of co-occurrence, and if the frequency of two words appearing at the same time is high, it is indicated by a thick line. It can be seen that the 'COVID-blue' pair is displayed in the boldest, and the 'COVID-emotion' and 'COVID-anxiety' pairs are displayed with a relatively thick line. 'Blue' related to COVID-19 is a word that means depression, and it was confirmed that COVID-19 and depression are keywords that should be of interest now. The research methodology used in this study has the convenience of being able to quickly measure social phenomena and changes while reducing costs. In this study, by analyzing news headlines, we were able to identify people's feelings and perceptions on issues related to COVID-19 depression, and identify the main agendas to be analyzed by deriving important keywords. By presenting and visualizing the subject and important keywords related to the COVID-19 emotion at a time, medical policy managers will be able to be provided a variety of perspectives when identifying and researching the regarding phenomenon. It is expected that it can help to use it as basic data for support, treatment and service development for psychological quarantine issues related to COVID-19.

Application of Digital Content Technology for Veterans Diplomacy (디지털 콘텐츠 기술을 활용한 보훈외교의 발전 방향)

  • So, Byungsoo;Park, Hyungi
    • Public Diplomacy: Theory and Practice
    • /
    • v.3 no.2
    • /
    • pp.35-52
    • /
    • 2023
  • Korea has developed as an influential country over Asia and all over the world based on remarkable economic development. And the background of this development was possible due to the existence of those who sacrificed precious lives and contributed to the nation's existence in the past crisis. Every year, Korea holds an annual commemorative event with people of national merit, Korean War veterans, and their families, expressing gratitude for sacrifices and contributions at home and abroad, and providing economic support. The tragedy of the Korean War and the pro-democracy movement in Korea over the past half century will one day become a history of the distant past over time. As generations change and the purpose and method of exchange by region change, the tragic situation that occurred earlier and the way people sacrificed for the country are expected to be different from before. In particular, it is true that the number of Korean War veterans and their families is gradually decreasing as they are now old. In addition, due to the outbreak of global infectious diseases such as COVID-19, it is difficult to plan and conduct face to face events as well as before. Currently, Korea's digital technology is introducing various methods. 5G communication networks, smart-phones, tablet PCs, and smart devices that can experience virtual reality are already used in our real lives. Business meetings are held in a metaverse environment, and concerts by famous singers are held in an online environment. Artificial intelligence technology has also been introduced in the field of human resource recruitment and customer response services, improving the work efficiency of companies. And it seems that this technology can be used in the field of veterans. In particular, there is a metaverse technology that can vividly show the situation during the Korean War, and a way to digitalize the voices and facial expressions of currently surviving veterans to convey their memories and lessons to future generations in the long run. If this digital technology method is realized on an online platform to hold a veterans' celebration event, veterans and their families on the other side of the world will be able to participate in the event more conveniently.

A Study on the Factors Influencing Technology Innovation Capability on the Knowledge Management Performance of the Company: Focused on Government Small and Medium Venture Business R&D Business (기술혁신역량이 기업의 지식경영성과에 미치는 요인에 관한 연구: 정부 중소벤처기업 R&D사업을 중심으로)

  • Seol, Dong-Cheol;Park, Cheol-Woo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.4
    • /
    • pp.193-216
    • /
    • 2020
  • Due to the recent mid- to long-term slump and falling growth rates in the global economy, interest in organizational structures that create new products or services as a new alternative to survive and develop in an opaque environment both internally and externally, and enhance organizational sustainability through changes in production methods and business innovation is increasing day by day. In this atmosphere, we agree that the growth of small and medium-sized venture companies has a significant impact on the national economy, and various efforts are being made to enhance the technological innovation capabilities of the members so that these small and medium-sized venture companies can enhance and sustain their performance. The purpose of this study is also to investigate how the technological innovation capabilities of small and medium-sized venture companies correlate with the performance of knowledge management and to analyze the role of network capabilities to organize the strategic activities of enterprise to obtain the resources and organizational capabilities to be used for value creation from external networks. In other words, research was conducted on the impact of technological innovation capabilities of small and medium venture companies on knowledge management performance by using network capabilities as parameters. Therefore, in this study, we would like to verify the hypothesis that innovation capabilities will have a positive impact on knowledge management performance by using network capabilities of small and medium venture companies. Economic activities based on technological innovation capabilities should respond quickly to new changes in an environment where uncertainty has increased, and lead to macro-economic growth and development as well as overcoming long-term economic downturns so that they can become the nation's new growth engine as well as sustainable growth and survival of the organization. In addition, this study was conducted by setting the most important knowledge management performance within the organization as a dependent variable. As a result, R&D and learning capabilities among technological innovation capabilities have no impact on financial performance. In contrast, it was shown that corporate innovation activities have a positive impact on both financial and non-financial performance. The fact that non-financial factors such as quality and productivity improvement are identified in the management of small and medium-sized venture companies utilizing their technological innovation capabilities is contrary to a number of studies by those corporate innovation activities affect financial performance during prior research. The reason for this result is that research companies have been out of start-up companies for more than seven years, but sales are less than 10 billion won, and unlike start-up companies, R&D and learning capabilities have more positive effects on intangible non-financial performance than financial performance. Corporate innovation activities have been shown to have a positive (+) impact on both financial and non-financial performance, while R&D and learning capabilities have a positive (+) impact on financial performance by parameters of network capability. Corporate innovation activities have been shown to have no impact on both financial and non-financial performance, and R&D and learning capabilities have no impact on non-financial performance. It could be seen that the parameter effects of network competency are limited to when R&D and learning competencies are derived from quantitative financial performance. It could be seen that the parameter effects of network competency are limited to when R&D and learning competencies are derived from quantitative financial performance.

Media Habits of Sensation Seekers (감지추구자적매체습관(感知追求者的媒体习惯))

  • Blakeney, Alisha;Findley, Casey;Self, Donald R.;Ingram, Rhea;Garrett, Tony
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.179-187
    • /
    • 2010
  • Understanding consumers' preferences and use of media types is imperative for marketing and advertising managers, especially in today's fragmented market. A clear understanding assists managers in making more effective selections of appropriate media outlets, yet individuals' choices of type and use of media are based on a variety of characteristics. This paper examines one personality trait, sensation seeking, which has not appeared in the literature examining "new" media preferences and use. Sensation seeking is a personality trait defined as "the need for varied, novel, and complex sensations and experiences and the willingness to take physical and social risks for the sake of such experiences" (Zuckerman 1979). Six hypotheses were developed from a review of the literature. Particular attention was given to the Uses and Gratification theory (Katz 1959), which explains various reasons why people choose media types and their motivations for using the different types of media. Current theory suggests that High Sensation Seekers (HSS), due to their needs for novelty, arousal and unconventional content and imagery, would exhibit higher frequency of use of new media. Specifically, we hypothesize that HSS will use the internet more than broadcast (H1a) or print media (H1b) and more than low (LSS) (H2a) or medium sensation seekers (MSS) (H2b). In addition, HSS have been found to be more social and have higher numbers of friends therefore are expected to use social networking websites such as Facebook/MySpace (H3) and chat rooms (H4) more than LSS (a) and MSS (b). Sensation seekers can manifest into a range of behaviors including disinhibition,. It is expected that alternative social networks such as Facebook/MySpace (H5) and chat rooms (H6) will be used more often for those who have higher levels of disinhibition than low (a) or medium (b) levels. Data were collected using an online survey of participants in extreme sports. In order to reach this group, an improved version of a snowball sampling technique, chain-referral method, was used to select respondents for this study. This method was chosen as it is regarded as being effective to reach otherwise hidden population groups (Heckathorn, 1997). A final usable sample of 1108 respondents, which was mainly young (56.36% under 34), male (86.1%) and middle class (58.7% with household incomes over USD 50,000) was consistent with previous studies on sensation seeking. Sensation seeking was captured using an existing measure, the Brief Sensation Seeking Scale (Hoyle et al., 2002). Media usage was captured by measuring the self reported usage of various media types. Results did not support H1a and b. HSS did not show higher levels of usage of alternative media such as the internet showing in fact lower mean levels of usage than all the other types of media. The highest media type used by HSS was print media, suggesting that there is a revolt against the mainstream. Results support H2a and b that HSS are more frequent users of the internet than LSS or MSS. Further analysis revealed that there are significant differences in the use of print media between HSS and LSS, suggesting that HSS may seek out more specialized print publications in their respective extreme sport activity. Hypothesis 3a and b showed that HSS use Facebook/MySpace more frequently than either LSS or MSS. There were no significant differences in the use of chat rooms between LSS and HSS, so as a consequence no support for H4a, although significant for MSS H4b. Respondents with varying levels of disinhibition were expected to have different levels of use of Facebook/MySpace and chat-rooms. There was support for the higher levels of use of Facebook/MySpace for those with high levels of disinhibition than low or medium levels, supporting H5a and b. Similarly there was support for H6b, Those with high levels of disinhibition use chat-rooms significantly more than those with medium levels but not for low levels (H6a). The findings are counterintuitive and give some interesting insights for managers. First, although HSS use online media more frequently than LSS or MSS, this groups use of online media is less than either print or broadcast media. The advertising executive should not place too much emphasis on online media for this important market segment. Second, social media, such as facebook/Myspace and chatrooms should be examined by managers as potential ways to reach this group. Finally, there is some implication for public policy by the higher levels of use of social media by those who are disinhibited. These individuals are more inclined to engage in more socially risky behavior which may have some dire implications, e.g. by internet predators or future employers. There is a limitation in the study in that only those who engage in extreme sports are included. This is by nature a HSS activity. A broader population is therefore needed to test if these results hold.

The Current Status of the Warsaw Convention and Subsequent Protocols in Leading Asian Countries (아시아 주요국가(主要國家)들에 있어서의 바르샤바 체제(體制)의 적용실태(適用實態)와 전망(展望))

  • Lee, Tae-Hee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.1
    • /
    • pp.147-162
    • /
    • 1989
  • The current status of the application and interpretation of the Warsaw Convention and its subsequent Protocols in Asian countries is in its fredgling stages compared to the developed countries of Europe and North America, and there is thus little published information about the various Asian governments' treatment and courts' views of the Warsaw System. Due to that limitation, the accent of this paper will be on Korea and Japan. As one will be aware, the so-called 'Warsaw System' is made up of the Warsaw Convention of 1929, the Hague Protocol of 1955, the Guadalajara Convention of 1961, the Guatemala City Protocol of 1971 and the Montreal Additional Protocols Nos. 1,2,3 and 4 of 1975. Among these instruments, most of the countries in Asia are parties to both the Warsaw Convention and the Hague Protocol. However, the Republic of Korea and Mongolia are parties only to the Hague Protocol, while Burma, Indonesia and Sri Lanka are parties only to the Warsaw Convention. Thailand and Taiwan are not parties only to the convention or protocol. Among Asian states, Indonesia, the Phillipines and Pakistan are also parties to the Guadalajara Convention, but no country in Asia has signed the Guatemala City Protocol of 1971 or the Montreal Additional Protocols, which Protocols have not yet been put into force. The People's Republic of China has declared that the Warsaw Convention shall apply to the entire Chinese territory, including Taiwan. 'The application of the Warsaw Convention to one-way air carriage between a state which is a party only to the Warsaw Convention and a state which is a party only to the Hague Protocol' is of particular importance in Korea as it is a signatory only to the Hague Protocol, but it is involved in a great deal of air transportation to and from the united states, which in turn is a party only to the Warsaw Convention. The opinion of the Supreme Court of Korea appears to be, that parties to the Warsaw Convention were intended to be parties to the Hague Protocol, whether they actually signed it or not. The effect of this decision is that in Korea the United States and Korea will be considered by the courts to be in a treaty relationship, though neither State is a signatory to the same instrument as the other State. The first wrongful death claim in Korea related to international carriage by air under the Convention was made in Hyun-Mo Bang, et al v. Korean Air Lines Co., Ltd. case. In this case, the plaintiffs claimed for damages based upon breach of contract as well as upon tort under the Korean Civil Code. The issue in the case was whether the time limitation provisions of the Convention should be applicable to a claim based in tort as well as to a claim based in contract. The Appellate Court ruled on 29 August 1983 that 'however founded' in Article 24(1) of the Convention should be construed to mean that the Convention should be applicable to the claim regardless of whether the cause of action was based in tort or breach of contract, and that the plaintiffs' rights to damages had therefore extinguished because of the time limitation as set forth in Article 29(1) of the Convention. The difficult and often debated question of what exactly is meant by the words 'such default equivalent to wilful misconduct' in Article 25(1) of the Warsaw Convention, has also been litigated. The Supreme Court of Japan dealt with this issue in the Suzuki Shinjuten Co. v. Northwest Airlines Inc. case. The Supreme Court upheld the Appellate Court's ruling, and decided that 'such default equivalent to wilful misconduct' under Article 25(1) of the Convention was within the meaning of 'gross negligence' under the Japanese Commercial Code. The issue of the convention of the 'franc' into national currencies as provided in Article 22 of the Warsaw Convention as amended by the Hague Protocol has been raised in a court case in Korea, which is now before the District Court of Seoul. In this case, the plaintiff argues that the gold franc equivalent must be converted in Korean Won in accordance with the free market price of gold in Korea, as Korea has not enacted any law, order or regulation prescribing the proper method of calculating the equivalent in its national currency. while it is unclear if the court will accept this position, the last official price of gold of the United States as in the famous Franklin Mint case, Special Drawing Right(SDR) or the current French franc, Korean Air Lines has argued in favor of the last official price of gold of the United States by which the air lines converted such francs into us Dollars in their General Conditions of Carriage. It is my understanding that in India, an appellate court adopted the free market price valuation. There is a report as well saying that if a lawsuit concerning this issue were brought in Pakistan, the free market cost of gold would be applied there too. Speaking specifically about the future of the Warsaw System in Asia though I have been informed that Thailand is actively considering acceding to the Warsaw Convention, the attitudes of most Asian countries' governments towards the Warsaw System are still wnot ell known. There is little evidence that Asian countries are moving to deal concretely with the conversion of the franc into their own local currencies. So too it cannot be said that they are on the move to adhere to the Montreal Additional Protocols Nos. 3 & 4 which attempt to basically solve many of the current problems with the Warsaw System, by adopting the SDR as the unit of currency, by establishing the carrier's absolute liability and an unbreakable limit and by increasing the carrier's passenger limit of liability to SDR 100,000, as well as permiting the domestic introduction of supplemental compensation. To summarize my own sentiments regarding the future, I would say that given the fact that Asian air lines are now world leaders both in overall size and rate of growth, and the fact that both Asian individuals and governments are becoming more and more reliant on the global civil aviation networks as their economies become ever stronger, I am hopeful that Asian nations will henceforth play a bigger role in ensuring the orderly and hasty development of a workable unified system of rules governing international commercial air carriage.

  • PDF

The Framework of Research Network and Performance Evaluation on Personal Information Security: Social Network Analysis Perspective (개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로)

  • Kim, Minsu;Choi, Jaewon;Kim, Hyun Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.177-193
    • /
    • 2014
  • Over the past decade, there has been a rapid diffusion of electronic commerce and a rising number of interconnected networks, resulting in an escalation of security threats and privacy concerns. Electronic commerce has a built-in trade-off between the necessity of providing at least some personal information to consummate an online transaction, and the risk of negative consequences from providing such information. More recently, the frequent disclosure of private information has raised concerns about privacy and its impacts. This has motivated researchers in various fields to explore information privacy issues to address these concerns. Accordingly, the necessity for information privacy policies and technologies for collecting and storing data, and information privacy research in various fields such as medicine, computer science, business, and statistics has increased. The occurrence of various information security accidents have made finding experts in the information security field an important issue. Objective measures for finding such experts are required, as it is currently rather subjective. Based on social network analysis, this paper focused on a framework to evaluate the process of finding experts in the information security field. We collected data from the National Discovery for Science Leaders (NDSL) database, initially collecting about 2000 papers covering the period between 2005 and 2013. Outliers and the data of irrelevant papers were dropped, leaving 784 papers to test the suggested hypotheses. The co-authorship network data for co-author relationship, publisher, affiliation, and so on were analyzed using social network measures including centrality and structural hole. The results of our model estimation are as follows. With the exception of Hypothesis 3, which deals with the relationship between eigenvector centrality and performance, all of our hypotheses were supported. In line with our hypothesis, degree centrality (H1) was supported with its positive influence on the researchers' publishing performance (p<0.001). This finding indicates that as the degree of cooperation increased, the more the publishing performance of researchers increased. In addition, closeness centrality (H2) was also positively associated with researchers' publishing performance (p<0.001), suggesting that, as the efficiency of information acquisition increased, the more the researchers' publishing performance increased. This paper identified the difference in publishing performance among researchers. The analysis can be used to identify core experts and evaluate their performance in the information privacy research field. The co-authorship network for information privacy can aid in understanding the deep relationships among researchers. In addition, extracting characteristics of publishers and affiliations, this paper suggested an understanding of the social network measures and their potential for finding experts in the information privacy field. Social concerns about securing the objectivity of experts have increased, because experts in the information privacy field frequently participate in political consultation, and business education support and evaluation. In terms of practical implications, this research suggests an objective framework for experts in the information privacy field, and is useful for people who are in charge of managing research human resources. This study has some limitations, providing opportunities and suggestions for future research. Presenting the difference in information diffusion according to media and proximity presents difficulties for the generalization of the theory due to the small sample size. Therefore, further studies could consider an increased sample size and media diversity, the difference in information diffusion according to the media type, and information proximity could be explored in more detail. Moreover, previous network research has commonly observed a causal relationship between the independent and dependent variable (Kadushin, 2012). In this study, degree centrality as an independent variable might have causal relationship with performance as a dependent variable. However, in the case of network analysis research, network indices could be computed after the network relationship is created. An annual analysis could help mitigate this limitation.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.