• Title/Summary/Keyword: global gradient estimate

Search Result 14, Processing Time 0.018 seconds

Radio location algorithm in microcellular wide-band CDMA environment (마이크로 셀룰라 Wide-band CDMA 환경에서의 위치 추정 알고리즘)

  • Chang, Jin-Weon;Han, Il;Sung, Dan-Keun;Shin, Bung-Chul;Hong, Een-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2052-2063
    • /
    • 1998
  • Various full-scale radio location systems have been developed since ground-based radio navigation systems appeared during World War II, and more recently global positioning systems (GPS) have been widely used as a representative location system. In addition, radio location systems based on cellular systems are intensively being studied as cellular services become more and more popular. However, these studies have been focused mainly on macrocellular systems of which based stations are mutually synchronized. There has been no study about systems of which based stations are asynchronous. In this paper, we proposed two radio location algorithms in microcellular CDMA systems of which base stations are asychronous. The one is to estimate the position of a personal station at the center of rectangular shaped area which approximates the realistic common area. The other, as a method based on road map, is to first find candidate positions, the centers of roads pseudo-range-distant from the base station which the personal station belongs to and then is to estimate the position by monitoring the pilot signal strengths of neighboring base stations. We compare these two algorithms with three wide-spread algorithms through computer simulations and investigate interference effect on measuring pseudo ranges. The proposed algorithms require no recursive calculations and yield smaller position error than the existing algorithms because of less affection of non-line-of-signt propagation in microcellular environments.

  • PDF

Ammonia Volatilization from Rice Paddy Soils Fertilized with 15N-Urea Under Elevated CO2 and Temperature

  • Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Dong-Suk;Lee, Sun-Il;Park, Hyun-Jung;Kim, Han-Yong;Nam, Hong-Shik;Cho, Kyeong-Min;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.233-237
    • /
    • 2009
  • It has widely been observed that the effect of elevating atmospheric $CO_2$ concentrations on rice productivity depends largely on soil N availabilities. However, the responses of ammonia volatilization from flooded paddy soil that is an important pathway of N loss and thus affecting fertilizer N availability to concomitant increases in atmospheric $CO_2$ and temperature has rarely been studied. In this paper, we first report the interactive effect of elevated $CO_2$ and temperature on ammonia volatilization from rice paddy soils applied with urea. Urea labeled with $^{15}N$ was used to quantitatively estimate the contribution of applied urea-N to total ammonia volatilization. This study was conducted using Temperature Gradient Chambers (TGCs) with two $CO_2$ levels [ambient $CO_2$ (AC), 383 ppmv and elevated $CO_2$ (EC), 645 ppmv] as whole-plot treatment (main treatment) and two temperature levels [ambient temperature (AT), $25.7^{\circ}C$ and elevated temperature (ET), $27.8^{\circ}C$] as split-plot treatments (sub-treatment) with triplicates. Elevated temperature increased ammonia volatilization probably due to a shift of chemical equilibrium toward $NH_3$ production via enhanced hydrolysis of urea to $NH_3$ of which rate is dependent on temperature. Meanwhile, elevated $CO_2$ decreased ammonia volatilization and that could be attributed to increased rhizosphere biomass that assimilates $NH_4^+$ otherwise being lost via volatilization. Such opposite effects of elevated temperature and $CO_2$ resulted in the accumulated amount of ammonia volatilization in the order of ACET>ACAT>ECET>ECAT. The pattern of ammonia volatilization from applied urea-$^{15}N$ as affected by treatments was very similar to that of total ammonia volatilization. Our results suggest that elevated $CO_2$ has the potential to decrease ammonia volatilization from paddy soils applied with urea, but the effect could partially be offset when air temperature rises concomitantly.

Development of a New Flood Index for Local Flood Severity Predictions (국지홍수 심도예측을 위한 새로운 홍수지수의 개발)

  • Jo, Deok Jun;Son, In Ook;Choi, Hyun Il
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.47-58
    • /
    • 2013
  • Recently, an increase in the occurrence of sudden local flooding of great volume and short duration due to global climate changes has occasioned the significant danger and loss of life and property in Korea as well as most parts of the world. Such a local flood that usually occurs as the result of intense rainfall over small regions rises quite quickly with little or no advance warning time to prevent flood damage. To prevent the local flood damage, it is important to quickly predict the flood severity for flood events exceeding a threshold discharge that may cause the flood damage for inland areas. The aim of this study is to develop the NFI (New Flood Index) measuring the severity of floods in small ungauged catchments for use in local flood predictions by the regression analysis between the NFI and rainfall patterns. Flood runoff hydrographs are generated from a rainfall-runoff model using the annual maximum rainfall series of long-term observations for the two study catchments. The flood events above a threshold assumed as the 2-year return period discharge are targeted to estimate the NFI obtained by the geometric mean of the three relative severity factors, such as the flood magnitude ratio, the rising curve gradient, and the flooding duration time. The regression results show that the 3-hour maximum rainfall depths have the highest relationships with the NFI. It is expected that the best-fit regression equation between the NFI and rainfall characteristics can provide the basic database of the preliminary information for predicting the local flood severity in small ungauged catchments.

A Real-Time Head Tracking Algorithm Using Mean-Shift Color Convergence and Shape Based Refinement (Mean-Shift의 색 수렴성과 모양 기반의 재조정을 이용한 실시간 머리 추적 알고리즘)

  • Jeong Dong-Gil;Kang Dong-Goo;Yang Yu Kyung;Ra Jong Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we propose a two-stage head tracking algorithm adequate for real-time active camera system having pan-tilt-zoom functions. In the color convergence stage, we first assume that the shape of a head is an ellipse and its model color histogram is acquired in advance. Then, the min-shift method is applied to roughly estimate a target position by examining the histogram similarity of the model and a candidate ellipse. To reflect the temporal change of object color and enhance the reliability of mean-shift based tracking, the target histogram obtained in the previous frame is considered to update the model histogram. In the updating process, to alleviate error-accumulation due to outliers in the target ellipse of the previous frame, the target histogram in the previous frame is obtained within an ellipse adaptively shrunken on the basis of the model histogram. In addition, to enhance tracking reliability further, we set the initial position closer to the true position by compensating the global motion, which is rapidly estimated on the basis of two 1-D projection datasets. In the subsequent stage, we refine the position and size of the ellipse obtained in the first stage by using shape information. Here, we define a robust shape-similarity function based on the gradient direction. Extensive experimental results proved that the proposed algorithm performs head hacking well, even when a person moves fast, the head size changes drastically, or the background has many clusters and distracting colors. Also, the propose algorithm can perform tracking with the processing speed of about 30 fps on a standard PC.