• Title/Summary/Keyword: global geopark

Search Result 16, Processing Time 0.019 seconds

Degree of Self-Understanding Through "Self-Guided Interpretation" in Yeoncheon, Hantan River UNESCO Geopark: Focusing on Readability and Curriculum Relevance (한탄강 세계지질공원 연천 지역의 자기-안내식 해설 매체를 통한 스스로 이해 가능 정도: 이독성과 교육과정 관련성을 중심으로)

  • Min Ji Kim;Chan-Jong Kim;Eun-Jeong Yu
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.655-674
    • /
    • 2023
  • This study examined whether the "self-guided interpretation" media in the Yeoncheon area of the Hantangang River UNESCO Geopark are intelligible for visitors. Accordingly, two on-site investigations were conducted in the Hantangang River Global Geopark in September and November 2022. The Yeoncheon area, known for its diverse geological features and the era of geological attraction formation, was selected for analysis. We analyzed the readability levels, graphic characteristics, and alignment with science curriculum of the interpretive media specific to geological sites among a total of 36 self-guided interpretive media in the Yeoncheon area. Results indicated that information boards, primarily offering guidance on geological attractions, were the most prevalent type of interpretive media in the Yeoncheon area. The quantity of text in explanatory media surpassed that of a 12th-grade science textbook. The average vocabulary grade was similar to that of 11th- and 12th-grade science textbooks, with somewhat reduced readability due to a high occurrence of complex sentences. Predominant graphic types included illustrative photographs, aiding comprehension of the geological formation process through multi-structure graphics. Regarding scientific terms used in the interpretive media, 86.3% of the terms were within the "Solid Earth" section of the 2015 revised curriculum, with the majority being at the 4th-grade level. The 11th-grade optional curriculum terms comprised the second largest portion, and 13.7% of all science terms were from outside the curriculum. Notably, variations in the scientific terminology's complexity was based on geological attractions. Specifically, the terminology level on the homepage tended to be generally higher than that on information boards. Through these findings, specific factors impeding visitor comprehension of geological attractions in the Yeoncheon area, based on the interpretation medium, were identified. We suggest further research to effect improvements in self-guided interpretation media, fostering geological resource education for general visitors and anticipating advancements in geology education.

A Study on the Operation Direction of the Specialized Library Based on the Local Environment: Focusing on the Construction of County A Library (지역 환경 기반의 특성화 도서관 운영 방향에 관한 연구: A군 도서관 건립을 중심으로)

  • Bo-il Kim;Hong-Ryul Kim
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.1
    • /
    • pp.59-83
    • /
    • 2024
  • The directions of recent library construction and operation reflect people's changed lifestyle and suggest innovative spaces specialized on the basis of the local environment. Hence, as the goals of the operation of (tentatively named) Songdaeso Library to be constructed within the Hantangang River UNESCO Global Geopark, this study proposes 'acting as complex cultural facilities,' 'operating stay-type reading culture space which is a shrine for workcation,' and 'acting as the landmark of A-gun (郡, county).' And this study works out strategies for its operation, which includes 'securing the validity of the construction of (tentatively named) Songdaeso Library,' 'linking to library policy as the driving force behind its operation,' and 'demonstrating the necessity for the existence of the library arising from the operation of the geological specialized library through landscape architecture.' It also presents concomitant operating plans, which are categorized into plans for manpower, library books, services, and budget.

The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems (마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화)

  • Oh, Changwhan;Lee, Seunghwan;Lee, Boyoung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.201-219
    • /
    • 2017
  • The Jinan Basin which includes Maisan locates in the central part of the northern boundary of the Yeongnam Massif. The basement rocks of the Jinan Basin and surrounding area are Precambrian gneiss and Mesozoic granite which were exposed on the surface before Cretaceous. The Jinan Basin, one of the Cretaceous pull-apart basins in South Korea, formed along the Yongdong-Gwangju fault system. Maisan is composed of conglomerate deposited in the eastern slope of the Jinan Basin showing the shape of horse ears and the unusual topography where many tafonies were developed. The strike slip fault that caused the Jinan Basin was connected to the deep depth so that the magma formed at 200 km depth could have extruded on the surface causing active volcanic activity in and around the Jinan basin. As a result, Cheonbansan composed of pyroclastic rocks, Gubongsan consisting of volcanic neck and WoonilamBanilam formed by the lava flow, appear around Maisan forming a specific terrain. After the formation of the Jinan Basin and surrounding volcanic rocks, they uplifted to form mountains including Masian; the uplifting time may be ca. 69-38 Ma. At this time, the Noryeong mountain range may be formed in the regions which extended from Chugaryeong through Muju and Jinan to Hampyeong dividing the Geumgang and Seomjingang water systems. Due to the ecological barrier, the Noryeong mountain range, Coreoleuciscus splendidus living in the Geumgang water systems was differentiated from that in the Soemjingang water system. In addition, the Geumgang and Mangyeong-Dongjingang water systems were separated by the Unjangsan, which developed in the NNW direction. As a result, diverse ecosystem have been established in and around Maisan and at the same time, diverse cultural and historical resources related to Maisan's unique petrological features, were also established. Therefore, Maisan and surrounding area can be regarded as a place where a geotourism can be successfully established by combining the ecological, cultural and historical resources with a geological heritage. Therefore Maisan and surrounding areas have a high possibility to be a National Geopark and UNESCO Global Geopark.

Volcanological History of the Baengnokdam Summit Crater Area, Mt. Halla in Jeju Island, Korea (제주도 한라산 백록담 일대의 화산활동사)

  • Ahn, Ung San;Hong, Sei Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.221-234
    • /
    • 2017
  • The Baengnokdam, the summit crater of Mt. Halla, is one of the representative geosites of World Natural Heritage and Global Geopark in Jeju Island. The crater is marked by two distinctive volcanic lithofacies that comprise: 1) a trachytic lava dome to the west of the crater and 2) trachybasaltic lava flow units covering the gentle eastern slope of the mountain. This study focuses on understanding the formative process of this peculiar volcanic lithofacies association at the summit of Mt. Halla through field observation and optically stimulated luminescence (OSL) dating of the sediments underlying the craterforming volcanics. The trachyte dome to the west of the crater is subdivided into 3 facies units that include: 1) the trachyte breccias originating from initial dome collapse, 2) the trachyte lava-flow unit and 3) the domal main body. On the other side, the trachybasalt is subdivided into 2 facies units that include: 1) the spatter and scoria deposit from the early explosive eruption and 2) lava-flow unit from the later effusion eruption. Quartz OSL dating on the sediments underlying the trachyte breccias and the trachybasaltic lava-flow unit reveals ages of ca. 37 ka and ca. 21 ka, respectively. The results point toward that the Baengnokdam summit crater was formed by eruption of trachybasaltic magma at about 19~21 ka after the trachyte dome formed later than 37 ka.

Geological Heritage Grade Distribution Mapping Using GIS (공간정보를 이용한 지질유산 등급분포도 작성 연구)

  • Lee, Soo-Jae;Lee, Sunmin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.867-878
    • /
    • 2017
  • Recent interest in geological heritage has been increased in that it can be used as a basic data onto predicting the global environmental change of its containing information about past global environment. In addition, due to the characteristics of the geological heritage, it is easy to damage and difficult to recover without continuous preservation and management. However, there are more damages occurring because of the sporadic spatial distribution and ambiguous management authority of geological heritage. Therefore, an integrated management system is needed by determining the spatial distribution of geological heritage preferentially. In this study, the detailed criteria for assessment of value from the preliminary studies were applied and the geological heritage grade distribution map was generated by using geospatial data in Seoul metropolitan area. For this purpose, the list of geological heritage sites in the Seoul metropolitan area, which is the study area, were complied through a literature review. The geospatial database was designed and constructed by applying the detailed criteria for assessment of value from the preliminary studies. After the construction of the spatial database, a grade map of the geological heritage was created. As a result of the geological heritage grade map in the Seoul metropolitan area, there were more than 35% of the geological heritage in northern Gyeonggi provinces such as Yeoncheon city (18.8%), Pocheon city (10.6%) and Paju city (6.3%). It is followed by 18.1% in Incheon and 8.1% in Ansan, which is approximately 26.2% in western Gyeonggi Province. The geological age of the geological heritage was the highest at in the fourth stage of the Cenozoic era of 16.9%. Through the results of this study, the geological heritage data of the Seoul metropolitan area were extracted from existing literature data and converted into spatial information. It enables comparing the geological features with the spatial distribution of geological heritage. In addition, a management system has been established based on spatial information of constantly building geological heritage data. This provides the integrated management system of the geological heritage to manage authority so that it can be used as a basis for the development of the geological park. Based on the results of this study, it is considered to be possible to systematically construct and utilize the geological heritage across the country.

Sedimentary Environmental Change and the Formation Age of the Damyang Wetland, Southwestern Korea (한국 남서부 담양습지의 퇴적환경 변화와 형성시기 연구)

  • Shin, Seungwon;Kim, Jin-Cheol;Yi, Sangheon;Lee, Jin-Young;Choi, Taejin;Kim, Jong-Sun;Roh, Yul;Huh, Min;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 2021
  • Damyang Wetland, a riverine wetland, has been designated as the first wetland protection area in South Korea and is a candidate area for the Mudeungsan Area UNESCO Global Geopark. The Damyang Wetland area is the upstream part of the Yeongsan River and is now a relatively wide plain. To reconstruct the sedimentary environment around the Damyang Wetland, core samples were obtained, and sedimentary facies analysis, AMS and OSL age dataings, grain size, and geochemical analyses were carried out. In addition, comprehensive sedimentary environment changes were reconstructed using previous core data obtained from this wetland area. In the Yeongsan River upstream area, where the Damyang Wetland is located, fluvial terrace deposits formed during the late Pleistocene are distributed in an area relatively far from the river. As a gravel layer is widely distributed throughout the plains, Holocene sediments were likely deposited in a braided river environment when the sea level stabilized after the middle Holocene. Then, as the sedimentary environment changed from a braided river to a meandering river, the influx of sand-dominated sediments increased, and a floodplain environment was formed around the river. In addition, based on the pollen data, it is inferred that the climate was warm and humid around 6,000 years ago, with wetland deposits forming afterward. The the trench survey results of the river area around the Damyang Wetland show that a well-rounded gravel layer occurs in the lower part, covered by the sand layer. The Damyang Wetland was likely formed after the construction of Damyang Lake in the 1970s, as muddy sediments were deposited on the sand layer.