• 제목/요약/키워드: global frame analysis

검색결과 171건 처리시간 0.025초

철탑구조의 트러스형상 변화에 따른 구조거동 분석 (Investigations of Structural Behaviors of Steel Tower Structures by Frame Shape Variation)

  • 문미영;김우범
    • 한국강구조학회 논문집
    • /
    • 제29권4호
    • /
    • pp.261-268
    • /
    • 2017
  • 본 논문에서는 강관철탑의 3차원 비선형해석 및 비교 검증 실험을 통하여 보조재의 역할 및 결구 거동 특성을 파악하였다. 특히 기존 철탑의 삼각결구를 단순화한 사각결구의 거동특성을 살펴보기 위하여 외측결구와 내측결구의 형상을 달리하고 각 결구의 다양한 조합을 통하여 보조재가 철탑의 내력에 미치는 영향을 살펴보았다.

Structural behavior of conventional and buckling restrained braced frames subjected to near-field ground motions

  • Guneyisi, Esra Mete;Ameen, Nali
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.553-570
    • /
    • 2014
  • In this study, nonlinear dynamic analyses were performed in order to evaluate and compare the structural response of different type of moment resisting frame buildings equipped with conventional braces (CBs) and buckling restrained braces (BRBs) subjected to near-field ground motions. For this, the case study frames, namely, ordinary moment-resisting frame (OMRF) and special moment-resisting frame (SMRF) having two equal bays of 6 m and a total height of 20 m were utilized. Then, CBs and BRBs were inserted in the bays of the existing frames. As a brace pattern, diagonal type with different configurations were used for the braced frame structures. For the earthquake excitation, artificial pulses equivalent to Northridge and Kobe earthquake records were taken into account. The results in terms of the inter-story drift index, global damage index, base shear, top shear, damage index, and plastification were discussed. The analysis of the results indicated a considerable improvement in the structural performance of the existing frames with the inclusion of conventional and especially buckling-restrained braces.

Seismic performance evaluation of a RC special moment frame

  • Kim, Taewan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.671-682
    • /
    • 2007
  • The probability and the reliability-based seismic performance evaluation procedure proposed in the FEMA-355F was applied to a reinforced concrete moment frame building in this study. For the FEMA procedure, which was originally developed for steel moment frame structures, to be applied to other structural systems, the capacity should be re-defined and the factors reflecting the uncertainties related to capacity and demand need to be determined. To perform the evaluation procedure a prototype building was designed per IBC 2003, and inelastic dynamic analyses were conducted applying site-specific ground motions to determine the parameters for performance evaluation. According to the analysis results, distribution of the determined capacities turned out to be relatively smaller than that of the demands, which showed that the defined capacity was reasonable. It was also shown that the prototype building satisfied the target performance since the determined confidence levels exceeded the objectives for both local and global collapses.

관광특구 활성화를 위한 내수면 관광자원화 전략 -가치프레임 분석을 중심으로- (Strategies for the Development of Tourism Resources in the Inland Waters for the Revitalization of Special Tourist Zone - Focus on value frame analysis -)

  • 조시영;이광국;전재균;양위주
    • 수산경영론집
    • /
    • 제50권3호
    • /
    • pp.59-71
    • /
    • 2019
  • In terms of coastal and marine tourism, Busan's Haeundae had the nation's representativeness, and is pushing for many kinds of related policies to revitalize the special tourism zone. Due to a drop in the number of beach users, it is inevitable for the Haeundae Special Tourist Zone to face active responses to new trends emerging in the global tourism market. Therefore, the purpose of this study is to present a tourism strategy for making the Suyeong River as a more competitive ourist resource along the zone. First, a language network analysis is conducted through interviews to understand the ideas of interest groups for the river cruise activation project. Second, the frame structure of stakeholders is used to analyze solutions by comparing the similarities and differences in recognition frames of interest groups. Third, we intend to analyze the detailed frame types of stakeholders and present new alternatives based on the structure of relationships between types.

철골브레이스에 의한 기존 RC건축물의 강도상승형 내진보강을 위한 설계고려사항 (The design considerations of steel braced frame for seismic retrofit through increasing the lateral strength of existing RC buildings)

  • 안충원;윤정환;송동엽;장범수;민찬기
    • 한국지진공학회논문집
    • /
    • 제17권6호
    • /
    • pp.293-303
    • /
    • 2013
  • This paper deals with steel braced frame as increasing the lateral strength and ductility in order to seismic retrofit of existing buildings and discusses the designing criteria and calculation method of retrofitted buildings. The addition of steel braced frame can be effective for increasing the lateral strength and ductility of existing buildings. However, There is a problem in utilizing this method. It is the approach to provide an adequate connection between the existing RC frame and the installed steel braced frame, because global strength by failure mode(three type) depends on detail of connection and strength of existing RC frame. So, the designer must be confirmed if it satisfies the required performance or not. Failure mode of type I is the most appropriate for increasing the lateral strength and ductility. Seismic performance evaluation and strength calculation of seismic retrofit are performed by guideline by KISTEC(Korea Infrastructure Safety & Technology)'s "seismic performance evaluation and rehabilitation of existing buildings" and Japan Building Disaster Prevention Association. Buildings are modeled and non-linear pushover analysis are performed using MIDAS program.

Performance-based seismic design of a spring-friction damper retrofit system installed in a steel frame

  • Masoum M. Gharagoz;Seungho Chun;Mohamed Noureldin;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.173-183
    • /
    • 2024
  • This study investigates a new seismic retrofit system that utilizes rotational friction dampers and axial springs. The retrofit system involves a steel frame with rotational friction dampers (RFD) at beam-column joints and linear springs at the corners, providing energy dissipation and self-centering capabilities to existing structures. The axial spring acts as a self-centering mechanism that eliminates residual deformations, while the friction damper mitigates seismic damage. To evaluate the seismic performance of the proposed retrofit system, a series of cyclic loading tests were carried out on a steel beam-column subassembly equipped with the proposed devices. An analytical model was then developed to validate the experimental results. A performance point ratio (PPR) was presented to optimize the design parameters of the retrofit system, and a performance-based seismic design strategy was developed based on the PPR. The retrofit system's effectiveness and the presented performance-based design approach were evaluated through case study models, and the analysis results demonstrated that the developed retrofit system and the performance-based design procedure were effective in retrofitting structures for multi-level design objectives.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

Optimal design using genetic algorithm with nonlinear inelastic analysis

  • Kim, Seung-Eock;Ma, Sang-Soo
    • Steel and Composite Structures
    • /
    • 제7권6호
    • /
    • pp.421-440
    • /
    • 2007
  • An optimal design method in cooperated with nonlinear inelastic analysis is presented. The proposed nonlinear inelastic method overcomes the difficulties due to incompatibility between the elastic global analysis and the limit state member design in the conventional LRFD method. The genetic algorithm used is a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance ones among sections in the database. They are satisfied with the constraint functions and give the lightest weight to the structure. The objective function taken is the total weight of the steel structure and the constraint functions are load-carrying capacity, serviceability, and ductility requirement. Case studies of a planar portal frame, a space two-story frame, and a three-dimensional steel arch bridge are presented.

Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.421-445
    • /
    • 2010
  • In this paper the formulation of an efficient frame element applicable for nonlinear analysis of 3D reinforced concrete (RC) frames is outlined. Interaction between axial force and bending moment is considered by using the fibre element approach. Further, section warping, effect of normal and tangential forces on the torsional stiffness of section and second order geometrical nonlinearities are included in the model. The developed computer code is employed for nonlinear static analysis of RC sub-assemblages and a simple approach for extending the formulation to dynamic cases is presented. Dynamic progressive collapse assessment of RC space frames based on the alternate path method is undertaken and dynamic load factor (DLF) is estimated. Further, it is concluded that the torsional behaviour of reinforced concrete elements satisfying minimum standard requirements is not significant for the framed structures studied.

전기자동차 프레임 소재에 따른 충돌해석에 관한 연구 (Collision Analysis Based on Electric Vehicle Frame Material)

  • 김도균;고동현;이상찬
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.78-84
    • /
    • 2021
  • Reducing the weight of automobiles is a significant global developmental task. Two materials are used to lighten automobiles: aluminum and CFRP frames. Aluminum is a non-ferrous metal, and CFRP is a composite material. They are lighter and harder than other materials. The two materials were used for the collision analysis. Subsequently, the two cases were compared. Three cases were considered for the collision analysis: head-on collision, partial head-on collision, and side collision at a speed of 60 km/h. The three cases were compared and analyzed considering the materials used to understand the difference between aluminum and CFRP and their collision characteristics.