• Title/Summary/Keyword: global flux

Search Result 243, Processing Time 0.03 seconds

Characteristics Analysis of a Direct-Drive AFPM Generator for 5kW Wind Turbine (직접 구동용 5kW AFPM 풍력 발전기 특성 해석)

  • Kim, Hyoung-Gil;Kim, Chul-Ho;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.773-774
    • /
    • 2006
  • Nowadays, the global interests are concentrated on the preserving of the clean environment, and the diminishing of the dependence on the fossil energy, and among the possible alternative energies, the wind turbine generating system is considered to be the best suited to produce high efficiency energy, without affecting the natural environment. The permanent magnet generators were been used for the wind power generating, for long time, with continuous efforts to improve the generating efficiency. And the latest trend on it is to develop an AFPM(Axial Flux Permanent Magnet)type, which is composed in the structure of rotor and stator shaped in the disc forms, and the direction of the flux at the air gap runs in parallel to the shaft. This thesis is on the study concerning with the analysis of the characteristics of the 5 kW at 300rpm direct drive AFPM generator which is suitable for the small scale wind turbine generating system. In it, the Electro-magnetically Coreless AFPM was been analyzed, the prototype generators been made, concentrated on interpreting the characteristics of the power output, and verifying it through the theoretical study and practical tests.

  • PDF

Physics of Solar Flares

  • Magara, Tetsuya
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.25.1-25.1
    • /
    • 2010
  • This talk outlines the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes related to a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in current sheets that causes shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes which affect lower atmospheres such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been developed, in which numerical simulation is a strong tool reproducing the time-dependent, nonlinear evolution of plasma before and after the onset of a flare. In this talk we review various models of a flare proposed so far, explaining key features of these models. We show observed properties of flares, and then discuss the processes of energy build-up, release, and transport, all of which are responsible for producing a flare. We come to a concluding view that flares are the manifestation of recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which was disrupted via interaction with convective plasma while it was rising through the convection zone.

  • PDF

Comparison of the effects of irradiation on iso-molded, fine grain nuclear graphites: ETU-10, IG-110 and NBG-25

  • Chi, Se-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2359-2366
    • /
    • 2022
  • Selecting graphite grades with superior irradiation characteristics is important task for designers of graphite moderation reactors. To provide reference information and data for graphite selection, the effects of irradiation on three fine-grained, iso-molded nuclear grade graphites, ETU-10, IG-110, and NBG-25, were compared based on irradiation-induced changes in volume, thermal conductivity, dynamic Young's modulus, and coefficient of thermal expansion. Data employed in this study were obtained from reported irradiation test results in the high flux isotope reactor (HFIR)(ORNL) (ETU-10, IG-110) and high flux reactor (HFR)(NRL) (IG-110, NBG-25). Comparisons were made based on the irradiation dose and irradiation temperature. Overall, the three grades showed similar irradiation-induced property change behaviors, which followed the historic data. More or less grade-sensitive behaviors were observed for the changes in volume and thermal conductivity, and, in contrast, grade-insensitive behaviors were observed for dynamic Young's modulus and coefficient of thermal expansion changes. The ETU-10 of the smallest grain size appeared to show a relatively smaller VC to IG-110 and NBG-25. Drastic decrease in the difference in thermal conductivity was observed for ETU-10 and IG-110 after irradiation. The similar irradiation-induced properties changing behaviors observed in this study especially in the DYM and CTE may be attributed to the assumed similar microstructures that evolved from the similar size coke particles and the same forming method.

Performance Analysis of Pressure-retarded Osmosis Power Using Biomimetic Aquaporin Membrane (생체모방형 아쿠아포린 분리막을 이용한 압력지연삼투 발전 성능분석)

  • Choi, Wook;Bae, Harim;Lee, Hyung-Keun;Lee, Jonghwi;Kim, Jong Hak;Park, Chul Ho
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.317-322
    • /
    • 2015
  • Salinity gradient power is a system which sustainably generates electricity for 24 hrs, if the system is constructed at a certain place where both seawater and river water are consistently pumped. Since power is critically determined by the water flux and the salt rejection, a membrane of water-semipermeable aquaporin protein in cell membranes was studied for pressure-retarded osmosis. NaCl was used as a salt, and $NaNO_3$ was used as a candidate to check the ion selectivity. The water flux of biomimetic aquaporin membranes was negligible at a concentration below 2M. Also, there is no remarkable dependence of water flux and ion selectivity on concentrations higher than 3M. Therefore, the biomimetic aquaporin membrane could not be applied into pressure-retarded osmosis; however, if a membrane could overcome the current limitations, the properties shown by natural cells could be accomplished.

Estimation of CO2 Net Atmospheric Flux in the Middle and Lower Nakdong River, and Influence Factors Analysis (낙동강 중하류에서 이산화탄소 순배출 플럭스 산정 및 영향인자 분석)

  • Lee, Eunju;Chung, Sewoong;Park, Hyungseok;Kim, Sungjin;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.316-331
    • /
    • 2019
  • Carbon dioxide($CO_2$) emission from rivers to the atmosphere is a key component in the global carbon cycle. Most of the rivers are supersaturated with $CO_2$. At a global scale, the amount of $CO_2$ emission from rivers is reported to be five-fold greater than that from lakes and reservoirs, but relevant data are rare in Korea. The objectives of this study is to estimate the $CO_2$ net atmospheric flux(NAF) from the upstream of Gangjeong-Goryeong Weir(GGW), Dalseong Weir(DSW), Hapcheon-Changnyeong Weir(HCW), and Changnyeong-Haman Weir(CHW) located in Nakdong River South Korea) using field and laboratory experiments and to apply data mining techniques to develop parsimonious prediction models that can be used to estimate $CO_2$ NAF with physical and water quality variables that can be collected easily. As a result, the study sites were all heterotrophic systems that often released $CO_2$ to the atmosphere, except when the algal photosynthesis was active.The median $CO_2$ NAF was minimum $391.5mg-CO_2/m^2$ day at GGW and maximum $1472.7mg-CO_2/m^2$ day at DSW. The $CO_2$ NAF showed a negative correlation with pH and Chl-a since the overgrowth of the algae consumed $CO_2$ in the water and increased the pH. As the parsimonious multiple regression model and random forest model developed, this study showed an excellent performance with the $Adj.R^2$ value higher than 0.77 in all weirs. Thus, these methods can be used to estimate $CO_2$ NAF in the river even if there is no $pCO_2$ measurement data.

Dimethylsulfide (DMS) in the Coastal Areas of the Cheju Island, Korea (제주도 연안해역을 중심으로 한 DMS 농도의 관측)

  • 김기현;이강웅;허철구;강창희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.161-170
    • /
    • 1997
  • The concentrations of dimethylsulfide (DMS) were determined using samples collected from a station located at Kosan, Cheju Island during two field campaigns held in December 1996 and January 1997. The atmospheric DMS concentrations measured at 6-hr intervals during the entire campaign periods, after excluding a few extreme values, spanned in the range of 14 to 410 pptv with mean and 1 SD value of 127 $\pm$ 94 pptv (N=42). Between two month periods during which the field campaigns were conducted, a notable reduction in DMS levels was observed which was comparable to the dramatic shift in air temperature. A considerable difference was also noted in DMS levels, when data were grouped by day/night basis. The cause of unexpected, high day-to-night DMS ratios is best explained in terms of high efficiency of daytime source processes relative to low efficiency of nighttime sink processes due to the characteristics of the study location. The surface water DMS of the study site, although scarcely measured, also behaved similarly to its atmospheric counterpart with its range from 0.3 to 19 nM (N=11). When correlation analysis was conducted between the atmospheric DMS concentration and other concurrently determined parameters, significant correlations were observed from most basic meteorological parameters such as windspeed, relative humidy, and air temperature. However, the existence of "not-so-strong" correlations between air temperature and DMS concentrations relative to other ones indicated that the effect of temperature on DMS behavior must be reflected in more complicated manners at the study site. The sea-to-air flux of DMS was approximated through an application of the mass-balance flux calculation method of Wylie and de Mora (1996) under the assumption that sink mechanism within the marine boundary layer is in steady-state condition with its counterpart, source mechanism. Based on this estimation method, we reached a conclusion that oceanic DMS emitted from the southwest sea of the Korean Peninsula can amount to approximately 9 $\sim$ 36 Gg S $yr^{-1}$.$yr^{-1}$.

  • PDF

Future Changes in Surface Radiation and Cloud Amount over East Asia under RCP Scenarios (RCP 시나리오에 따른 미래 동아시아 지표복사에너지와 운량 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Shim, Sungbo;Byun, Youngwha
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.433-442
    • /
    • 2016
  • In this study, we examine future changes in surface radiation associated with cloud amount and aerosol emission over East Asia. Data in this study is HadGEM2-CC (Hadley Centre Global Environmental Model version 2, Carbon Cycle) simulations of the Representative Concentration Pathways (RCPs) 2.6/4.5/8.5. Results show that temperature and precipitation increase with rising of the atmosphere $CO_2$. At the end of $21^{st}$ century (2070~2099) relative to the end of $20^{st}$ century (1981~2005), changes in temperature and precipitation rate are expected to increase by $+1.85^{\circ}C/+6.6%$ for RCP2.6, $+3.09^{\circ}C/+8.5%$ for RCP4.5, $+5.49^{\circ}C/10%$ for RCP8.5. The warming results from increasing Net Down Surface Long Wave Radiation Flux (LW) and Net Down Surface Short Wave Radiation Flux (SW) as well. SW change increases mainly from reduced total Aerosol Optical Depth (AOD) and low-level cloud amount. LW change is associated with increasing of atmospheric $CO_2$ and total cloud amount, since increasing cloud amounts are related to absorb LW radiation and remit the energy toward the surface. The enhancement of precipitation is attributed by increasing of high-level cloud amount. Such climate conditions are favorable for vegetation growth and extension. Expansion of C3 grass and shrub is distinct over East Asia, inducing large latent heat flux increment.

Response of estuary flow and sediment transport according to different estuarine dam locations and freshwater discharge intervals

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.519-519
    • /
    • 2023
  • Estuarine dams are a recent and global phenomenon. While estuarine dams can provide the benefit of improved freshwater resources, they can also alter estuarine processes. Due to the wide range of estuarine types and estuarine dam configurations, the effect of estuarine dams on estuaries is not well understood in general. To develop a systematic understanding of the effect of estuarine dam location and freshwater discharge interval on a range of estuarine types (strongly stratified, partially mixed, periodically stratified, and well-mixed), this study used a coupled hydrodynamic-sediment dynamic numerical model (COAWST) and compared flow, sediment transport, and morphological conditions in the pre- and post-dam estuaries. For each estuarine type, scenarios with dam locations at 20, 55 and 90 km from the mouth and discharge intervals of a discharge every 0.5, 3, and 7 days were investigated. The results were analyzed in terms of change in tide, river discharge, estuarine classification, and sediment flux mechanism. The estuarine dam location primarily affected the tide-dominated estuaries, and the resonance length was an important length scale affecting the tidal currents and Stokes return flow. When the location was less than the resonance length, the tidal currents and Stokes return flow were most reduced due to the loss of tidal prism, the dead-end channel, and the shift from mixed to standing tides. The discharge interval primarily affected the river-dominated estuaries, and the tidal cycle period was an important time scale. When the interval was greater than the tidal cycle period, notable seaward discharge pulses and freshwater fronts occurred. Dams located near the mouth with large discharge interval differed the most from their pre-dam condition based on the estuarine classification. Greater discharge intervals, associated with large discharge magnitudes, resulted in scour and seaward sediment flux in the river-dominated estuaries, and the dam located near the resonance length resulted in the greatest landward tidal pumping sediment flux and deposition in the tide-dominated estuaries.

  • PDF

A Study on the Validity of the Metal Filter Application in MBR Process (MBR 시스템에서의 금속필터 적용타당성 연구)

  • Lee, Min Soo;Lee, Kang Hoon;Lee, Yong Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.66-73
    • /
    • 2022
  • In this study, a method for stabilizing treated water was conducted while maintaining high flux using a metal flat membrane module made of stainless steel. This module had a pore size of 13 ㎛, so it was possible to operate at a high flux from 60 LMH to 100 LMH. However, although SS leaked about 30~50 ppm during initial operation, aggregation was possible because SS acted as aggregation nucleus. While polymer membrane permeate does not have aggregation nucleus, so coagulation is possible but not flocculation. Typically clay or bentonite, which is used as aggregation nucleus, is additionally administered. In this study, the total phosphorus treatment and the quality of the treated water were to promote stability because flocculation was achieved only with SS leakage without the need for such a aggregation nucleus. Finally, the feasibility of operating a metal membrane filter capable of high flux in stable treated water to be applied to the MBR system.

CO2 Exchange in Kwangneung Broadleaf Deciduous Forest in a Hilly Terrain in the Summer of 2002 (2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환)

  • Choi, Tae-jin;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.70-80
    • /
    • 2003
  • We report the first direct measurement of $CO_2$ flux over Kwangneung broadleaf deciduous forest, one of the tower flux sites in KoFlux network. Eddy covariance system was installed on a 30 m tower along with other meteorological instruments from June to August in 2002. Although the study site was non-ideal (with valley-like terrain), turbulence characteristics from limited wind directions (i.e., 90$\pm$45$^{\circ}$) was not significantly different from those obtained at simple, homogeneous terrains with an ideal fetch. Despite very low rate of data retrieval, preliminary results from our analysis are encouraging and worthy of further investigation. Ignoring the role of advection terms, the averaged net ecosystem exchange (NEE) of $CO_2$ ranged from -1.2 to 0.7 mg m$^{-2}$ s$^{-1}$ from June to August in 2002. The effect of weak turbulence on nocturnal NEE was examined in terms of friction velocity (u*) along with the estimation of storage term. The effect of low uf u* NEE was obvious with a threshold value of about 0.2 m s$^{-1}$ . The contribution of storage term to nocturnal NEE was insignificant; suggesting that the $CO_2$ stored within the forest canopy at night was probably removed by the drainage flow along the hilly terrain. This could be also an artifact of uncertainty in calculations of storage term based on a single-level concentration. The hyperbolic light response curves explained >80% of variation in the observed NEE, indicating that $CO_2$ exchange at the site was notably light-dependent. Such a relationship can be used effectively in filling up the missing gaps in NEE data through the season. Finally, a simple scaling analysis based on a linear flow model suggested that advection might play a significant role in NEE evaluation at this site.