• Title/Summary/Keyword: global exploration roadmap

Search Result 3, Processing Time 0.016 seconds

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Suggestion of Korea's Deep Space Exploration Roadmap through Participation to the Artemis International Manned Lunar Exploration Program (한국의 Artemis 국제공동 유인달탐사 참여를 중심으로 우리나라 심우주탐사 로드맵 제안)

  • Choi, Gi-Hyuk;Kim, Dae-Yeong
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.52-65
    • /
    • 2022
  • Korea is near close the success on the indigenous launch vehicle KSLV-2 after the second test launch during the second half of 2022, and the satellite development has been already in the level of advanced country. After the such mature of satellite and launch vehicle technologies, Korea's space development main theme should be 'Space Exploration and Space Application', and paradigm should be changed from 'Hardware' to 'Scientific/Technological Mission', from 'Unmanned' to 'Manned'. Korea's prime space strategy should be the direction of expansion of space industry, creation of employment and secure the key technologies, improvement of convenience and safety of people. For the purpose it is necessary to start 'Manned Space Development' such that participation to 'Artemis and Gateway Program' in 20s' and manned Mars exploration in 30s' which would be carried out by means of global international cooperation, and which could be a good opportunity to explore the new area of space development and upgrade national technology capability. Taking advantage of this opportunity, it is required for Korea to join the international programs through developing indigenous challenging, sustainable Korean mission and hardware. Also selection of the 2nd Korean Astronaut could draw national attention, especially could give dreams to young generation. Participation to the Artemis program could be the opportunity of entering the major space fairing nation and boosting up national pride. In this study we survey and analyze the Artemis Program in detail, and in conclusion we suggest the strategy of Korea's participation to the Artemis Program.

Assessment of DTVC Operation Efficiency for the Simulation of High Vacuum and Cryogenic Lunar Surface Environment (고진공 및 극저온 달의 지상 환경 재현을 위한 지반열진공챔버 운영 효율성 평가)

  • Jin, Hyunwoo;Chung, Taeil;Lee, Jangguen;Shin, Hyu-Soung;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.125-134
    • /
    • 2022
  • The Global Expansion Roadmap published by the International Space Exploration Coordination Group, which is organized by space agencies around the world, presents future lunar exploration guidance and stresses a lunar habitat program to utilize lunar resources. The Moon attracts attention as an outpost for deep space exploration. Simulating lunar surface environments is required to evaluate the performances of various equipment for future lunar surface missions. In this paper, an experimental study was conducted to simulate high vacuum pressure and cryogenic temperature of the permanent shadow regions in the lunar south pole, which is a promising candidate for landing and outpost construction. The establishment of an efficient dirty thermal vacuum chamber (DTVC) operation process has never been presented. One-dimensional ground cooling tests were conducted with various vacuum pressures with the Korean Lunar Simulant type-1 (KLS-1) in DTVC. The most advantageous vacuum pressure was found to be 30-80 mbar, considering the cooling efficiency and equipment stability. However, peripheral cooling is also required to simulate a cryogenic for not sublimating ice in a high vacuum pressure. In this study, an efficient peripheral cooling operation process was proposed by applying the frost ratio concept.