• 제목/요약/키워드: global engineering

검색결과 7,152건 처리시간 0.033초

Global Platform 상호인증을 위한 난수 시험 (A Random Number Test of Mutual Authentication for Global Platform)

  • 민병진;류재철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.218-221
    • /
    • 2016
  • Global Platform는 다중 응용프로그램의 보안적 관리를 위한 IC칩 카드의 글로벌 산업표준으로써, GP 규격이 구현된 IC칩 카드는 다양한 응용분야에서 사용되는 애플리케이션을 카드에 탑재하고자 할 때 정당한 호스트와 카드임을 상호간에 입증하기 위해서 상호인증을 수행한다. 본 논문은 GP 규격에서 제시하는 카드와 호스트간의 대칭키 기반 상호인증 프로토콜에 대해서 분석하고, 카드가 생성한 난수의 유효성을 효율적으로 검증하는 방안을 제시한다.

초음파 영상의 콘트라스트 향상을 위한 전역적, 적응적 방법의 융합 (Fusion of Global and Adaptive Methods for Contrast Enhancement of Ultrasound Images)

  • 윤재호;박래홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.357-358
    • /
    • 2007
  • Contrast enhancement in the field of ultrasound imaging contributes to improve the accuracy of medical diagnosis by enhancing the visibility of ultrasound images. This paper proposes a contrast enhancement method that improves the contrast of ultrasound images both globally and locally by fusing global and adaptive contrast enhancement methods. Experimental results show that our approach yields more competitive results than the existing global and adaptive contrast enhancement methods in enhancing the visibility of ultrasound images.

  • PDF

One Dimensional Optimization using Learning Network

  • Chung, Taishn;Bien, Zeungnam
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.33-39
    • /
    • 1995
  • One dimensional optimization problem is considered, we propose a method to find the global minimum of one-dimensional function with on gradient information but only the finite number of input-output samples. We construct a learning network which has a good learning capability and of which global maximum(or minimum) can be calculated with simple calculation. By teaching this network to approximate the given function with minimal samples, we can get the global minimum of the function. We verify this method using some typical esamples.

  • PDF

Local and Global Information Exchange for Enhancing Object Detection and Tracking

  • Lee, Jin-Seok;Cho, Shung-Han;Oh, Seong-Jun;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권5호
    • /
    • pp.1400-1420
    • /
    • 2012
  • Object detection and tracking using visual sensors is a critical component of surveillance systems, which presents many challenges. This paper addresses the enhancement of object detection and tracking via the combination of multiple visual sensors. The enhancement method we introduce compensates for missed object detection based on the partial detection of objects by multiple visual sensors. When one detects an object or more visual sensors, the detected object's local positions transformed into a global object position. Local and global information exchange allows a missed local object's position to recover. However, the exchange of the information may degrade the detection and tracking performance by incorrectly recovering the local object position, which propagated by false object detection. Furthermore, local object positions corresponding to an identical object can transformed into nonequivalent global object positions because of detection uncertainty such as shadows or other artifacts. We improved the performance by preventing the propagation of false object detection. In addition, we present an evaluation method for the final global object position. The proposed method analyzed and evaluated using case studies.

전역 최적화기법과 파라메트릭 변환함수를 이용한 선형 최적화 (Hull Form Optimization using Parametric Modification Functions and Global Optimization)

  • 김희정;전호환;안남현
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.590-600
    • /
    • 2008
  • This paper concerns the development of a designer friendly hull form parameterization and its coupling with advanced global optimization algorithms. As optimization algorithms, we choose the Partial Swarm Optimization(PSO) recently introduced to solve global optimization problems. Most general-purpose optimization softwares used in industrial applications use gradient-based algorithms, mainly due to their convergence properties and computational efficiency when a relatively few number of variables are considered. However, local optimizers have difficulties with local minima and non-connected feasible regions. Because of the increase of computer power and of the development of efficient Global Optimization (GO) methods, in recent years nongradient-based algorithms have attracted much attention. Furthermore, GO methods provide several advantages over local approaches. In the paper, the derivative-based SQP and the GO approach PSO are compared with their relative performances in solving some typical ship design optimization problem focusing on their effectiveness and efficiency.

A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA)

  • Yi, Ting-Hua;Wen, Kai-Fang;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.425-448
    • /
    • 2016
  • In this paper, a new Pigeon Colony Algorithm (PCA) based on the features of a pigeon colony flying is proposed for solving global numerical optimization problems. The algorithm mainly consists of the take-off process, flying process and homing process, in which the take-off process is employed to homogenize the initial values and look for the direction of the optimal solution; the flying process is designed to search for the local and global optimum and improve the global worst solution; and the homing process aims to avoid having the algorithm fall into a local optimum. The impact of parameters on the PCA solution quality is investigated in detail. There are low-dimensional functions, high-dimensional functions and systems of nonlinear equations that are used to test the global optimization ability of the PCA. Finally, comparative experiments between the PCA, standard genetic algorithm and particle swarm optimization were performed. The results showed that PCA has the best global convergence, smallest cycle indexes, and strongest stability when solving high-dimensional, multi-peak and complicated problems.

Extended artificial neural network for estimating the global response of a cable-stayed bridge based on limited multi-response data

  • Namju Byun;Jeonghwa Lee;Keesei Lee;Young-Jong Kang
    • Smart Structures and Systems
    • /
    • 제32권4호
    • /
    • pp.235-251
    • /
    • 2023
  • A method that can estimate global deformation and internal forces using a limited amount of displacement data and based on the shape superposition technique and a neural network has been recently developed. However, it is difficult to directly measure sufficient displacement data owing to the limitations of conventional displacement meters and the high cost of global navigation satellite systems (GNSS). Therefore, in this study, the previously developed estimation method was extended by combining displacement, slope, and strain to improve the estimation accuracy while reducing the need for high-cost GNSS. To validate the proposed model, the global deformation and internal forces of a cable-stayed bridge were estimated using limited multi-response data. The effect of multi-response data was analyzed, and the estimation performance of the extended method was verified by comparing its results with those of previous methods using a numerical model. The comparison results reveal that the extended method has better performance when estimating global responses than previous methods.

Three Degrees of Freedom Global Calibration Method for Measurement Systems with Binocular Vision

  • Xu, Guan;Zhang, Xinyuan;Li, Xiaotao;Su, Jian;Lu, Xue;Liu, Huanping;Hao, Zhaobing
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.107-117
    • /
    • 2016
  • We develop a new method to globally calibrate the feature points that are derived from the binocular systems at different positions. A three-DOF (degree of freedom) global calibration system is established to move and rotate the 3D calibration board to an arbitrary position. A three-DOF global calibration model is constructed for the binocular systems at different positions. The three-DOF calibration model unifies the 3D coordinates of the feature points from different binocular systems into a unique world coordinate system that is determined by the initial position of the calibration board. Experiments are conducted on the binocular systems at the coaxial and diagonal positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.573 mm, 0.520 mm and 0.528 mm at the coaxial positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.495 mm, 0.556 mm and 0.627 mm at the diagonal positions. This method provides a global and accurate calibration to unity the measurement points of different binocular vision systems into the same world coordinate system.

디지털 디바이스를 이용한 이상운동증에서의 운동손상 정량화 방법 (A Digital Device-Based Method for Quantifying Motor Impairment in Movement Disorders)

  • 배수한;윤다은;하재경;권다은;김영구;안민규
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권6호
    • /
    • pp.247-255
    • /
    • 2020
  • Accurate diagnosis of movement disorders is important for providing right patient care at right time. In general, assessment of motor impairment relies on clinical ratings conducted by experienced clinicians. However, this may introduce subjective opinions into scoring the severity of motor impairment. Digital devices such as table PC and smart band with accelerometer can be used for more accurate and objective assessment and possibly helpful for clinicians to make right decision of patient's states. In this study, we introduce quantification algorithms of motor impairment which uses the digital data acquired during four clinical motor tests (Line drawing, Spiral drawing, Nose to finger and Hand flip tests). The step by step procedure of quantifying metrics (Tremor Frequency, Tremor Magnitude, Error Distance, Time, Velocity, Count and Period) are provided with flowchart. The effectiveness of the proposed algorithm is presented with the result from simulated data (normal, normal with tremor and slowness, poor with tremor, poor with tremor and slowness).

베이지안 딥러닝 기법을 이용한 확률적 적설심 예측 모델 개발 (Development of a Stochastic Snow Depth Prediction Model Using a Bayesian Deep Learning Method)

  • 정영준;이상익;이종혁;서병훈;김동수;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.35-41
    • /
    • 2022
  • Heavy snow damage can be prevented in advance with an appropriate security system. To develop the security system, we developed a model that predicts snow depth after a few hours when the snow depth is observed, and utilized it to calculate a failure probability with various types of greenhouses and observed snow depth data. We compared the Markov chain model and Bayesian long short-term memory models with varying input data. Markov chain model showed the worst performance, and the models that used only past snow depth data outperformed the models that used other weather data with snow depth (temperature, humidity, wind speed). Also, the models that utilized 1-hour past data outperformed the models that utilized 3-hour data and 6-hour data. Finally, the Bayesian LSTM model that uses 1-hour snow depth data was selected to predict snow depth. We compared the selected model and the shifting method, which uses present data as future data without prediction, and the model outperformed the shifting method when predicting data after 11-24 hours.