• Title/Summary/Keyword: global climate model

Search Result 579, Processing Time 0.027 seconds

Policy Studies for Advancing Aerosol Research on Climate Change in Korea (기후변화 대응 에어러솔 연구 발전을 위한 정책 연구)

  • Kim, Jiyoung;Lee, YongSeob;Shin, Im Chul
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.49-61
    • /
    • 2010
  • Atmospheric aerosols play a crucial role for changing climate, resulting in a wide range of uncertainty for future climate prediction. In this paper we review current international research status and trend of climate-related aerosol science. There have been carried out a number of campaigns (including ACE-Asia, TRACE-P, ABC, and so on) and special experiments with some modeling studies over Korea, East Asia, and the Northwestern Pacific to characterize the various properties (physical, chemical, optical, and radiative) of Asian aerosols and evaluate their climate forcing impacts. But some parts of the aerosol research may need to be improved, advanced, or newly launched. Especially, a chemical transport model (CTM) embedded by a general circulation model (GCM) should be developed by the national scientific community with a high research priority, actively collaborating with international community in order to estimate direct and indirect global radiative forcing due to anthropogenic and natural aerosols.

Application of the WRF Model for Dynamical Downscaling of Climate Projections from the Community Earth System Model (CESM) (WRF V3.3 모형을 활용한 CESM 기후 모형의 역학적 상세화)

  • Seo, Jihyun;Shim, Changsub;Hong, Jiyoun;Kang, Sungdae;Moon, Nankyoung;Hwang, Yun Seop
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.347-356
    • /
    • 2013
  • The climate projection with a high spatial resolution is required for the studies on regional climate changes. The Korea Meteorological Administration (KMA) has provided downscaled RCP (Representative Concentration Pathway) scenarios over Korea with 1 km spatial resolution. If there are additional climate projections produced by dynamically downscale, the quality of impacts and vulnerability assessments of Korea would be improved with uncertainty information. This technical note intends to instruct the methods to downscale the climate projections dynamically from the Community Earth System Model (CESM) to the Weather Research and Forecast (WRF) model. In particular, here we focus on the instruction to utilize CAM2WRF, a sub-program to link output of CESM to initial and boundary condition of WRF at Linux platform. We also provide the example of the dynamically downscaled results over Korean Peninsula with 50 km spatial resolution for August, 2020. This instruction can be helpful to utilize global scale climate scenarios for studying regional climate change over Korean peninsula with further validation and uncertainty/bias analysis.

Evaluation of carbonation service life of slag blended concrete considering climate changes

  • Wang, Xiao-Yong;Luan, Yao
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.419-429
    • /
    • 2018
  • Climate changes, such as increasing of $CO_2$ concentration and global warming, will impact on the carbonation service life of concrete structures. Moreover, slag blended concrete has a lower carbonation resistance than control concrete. This study presents a probabilistic numerical procedure for evaluating the impact of climate change on carbonation service life of slag blended concrete. This numerical procedure considers both corrosion initiation period and corrosion propagation period. First, in corrosion initiation period, by using an integrated hydration-carbonation model, the amount of carbonatable substances, porosity, and carbonation depth are calculated. The probability of corrosion initiation is determined through Monte Carlo method. Second, in corrosion propagation period, a probabilistic model is proposed to calculate the critical corrosion degree at surface cracking, the probability of surface cracking, and service life. Third, based on the service life in corrosion initiation period and corrosion propagation period, the whole service life is calculated. The analysis shows that for concrete structures with 50 years service life, after considering climate changes, the service life reduces about 7%.

Applicability of Climate Change Impact Assessment Models to Korean Forest (산림에 대한 기후변화 영향평가 모형의 국내 적용성 분석)

  • Kim, Su-na;Lee, Woo-Kyun;Son, Yowhan;Cho, Yongsung;Lee, Mi-Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.33-48
    • /
    • 2009
  • Forests store carbon dioxide ($CO_2$), one of the major factors of global warming, in vegetation and soils through photosynthesis process. In addition, woods deposit $CO_2$ for a long term until the harvested wood is decomposed or burned, and deforested areas could be expanded the carbon sinks through reforestation. Forests are a lso able to decrease temperature through transpiration and contribute to control the micro climate in global climate systems. Consequently, forests are considered as one of major sinks of greenhouse gases for mitigating global warming. It is very important to develop a Korea specific forest carbon flux model for preparing adaptation measures to climate change. In this study, we compared the climate change impact models in forests developed in foreign countries and analyzed the applicability of the models to Korean forest. Also we selected models applicable to Korean forest and suggested approaches for developing Korean specific model.

The Tsushima Warm Current from a High Resolution Ocean Prediction Model, HYCOM (고해상도 해양예보모형 HYCOM에 재현된 쓰시마난류)

  • Seo, Seongbong;Park, Young-Gyu;Park, Jae-Hun;Lee, Ho Jin;Hirose, N.
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.135-146
    • /
    • 2013
  • This study investigates the characteristic of the Tsushima Warm Current from an assimilated high resolution global ocean prediction model, $1/12^{\circ}$ Global HYbrid Coordiate Ocean Model (HYCOM). The model results were verified through a comparison with current measurements obtained by acoustic Doppler current profiler (ADCP) mounted on the passenger ferryboat between Busan, Korea, and Hakata, Japan. The annual mean transport of the Tsushima Warm Current was 2.56 Sverdrup (Sv) (1 Sv = $10^6m^3s^{-1}$), which is similar to those from previous studies (Takikawa et al. 1999; Teague et al. 2002). The volume transport time series of the Tsushima Warm Current from HYCOM correlates to a high degree with that from the ADCP observation (the correlation coefficient between the two is 0.82). The spatiotemporal structures of the currents as well as temperature and salinity from HYCOM are comparable to the observed ones.

Assessment of Changes in Temperature and Primary Production over the East China Sea and South Sea during the 21st Century using an Earth System Model (지구시스템 모형을 이용한 21세기 동중국해와 남해의 수온과 일차생산 변화 평가)

  • Park, Young-Gyu;Choi, Sang-Hwa;Kim, Seon-Dong;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.229-237
    • /
    • 2012
  • Using results from an Earth System model, we investigated change in primary production in the East China Sea, under a global warming scenario. As global warming progresses, the vertical stratification of water becomes stronger, and nutrient supply from the lower part to the upper part is reduced. Consequently, so is the primary production. In addition to the warming trend, there is strong decadal to interdecadal scale variability, and it takes a few decades before the warming trend surpasses natural variability. Thus, it would be very hard to investigate the global warming trend using data of several years' length.

Measurement of Rain Induced Attenuation using the Beacon Signal of Koreasat-3

  • Choi, Dong-You;Park, Chang-Gyun
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.3
    • /
    • pp.119-123
    • /
    • 2004
  • This paper presents here the results of the measurements of rain-induced attenuation in the vertically polarized signal propagating at 12.2525 GHz during some rain events, which occurred in the rainy wet season of the year 2001 at Yong-in, Korea(temperate climate). The attenuation measured experimentally was compared with that obtained using the International Telecommunication Union Radio Communication Sector(ITU-R) model, the SAM model and the Global model. In this paper, measured results are in good agreement with the ITU-R prediction.

Effect of Climate Change on Water Quality in Seonakdong River Experimental Catchment (기후변화에 따른 서낙동강 시험유역에서의 수질영향 분석)

  • Kang, Ji Yoon;Kim, Jung Min;Kim, Young Do;Kang, Boo Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.197-206
    • /
    • 2013
  • Recently, climate change causes climatic anomaly such as global warming, the typhoon and severe rain storm etc. and it brings damage frequently. Climate change and global warming are prevalent all over the world in this century and many researchers including hydrologists have studied on the climate change. In this study, Seonakdong river watershed in the Nakdong river basin was selected as a study area. Real-time monitoring system was used to draw the rating curves, which has 0.78 to 0.96 of $R^2$. To predict runoff change in Seonakdong river watershed caused by climate change, the change in hydrologic runoff were predicted using the watershed model, SWAT. As a result, the runoff from the Seonakdong river watershed was increased by up to 45 % in summer. Because of the non-point sources from the farmland and the urban area, the water quality will be affected by the climate change. In this study, the operating plan of the water gates in Seonakdong river will be suggested by considering the characteristics of the watershed runoff due to the climate change. The optimal watergate opening plan will solve the water pollution problems in the reservoir-like river.

Possible Changes of East Asian Summer Monsoon by Time Slice Experiment (Time Slice 실험으로 모의한 동아시아 여름몬순의 변화)

  • Moon, JaYeon;Kim, Moon-Hyun;Choi, Da-Hee;Boo, Kyung-On;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.18 no.1
    • /
    • pp.55-70
    • /
    • 2008
  • The global time slice approach is a transient experiment using high resolution atmosphere-only model with boundary condition from the low resolution globally coupled ocean-atmosphere model. The present study employs this "time slice concept" using ECHAM4 atmosphere-only model at a horizontal resolution of T106 with the lower boundary forcing obtained from a lower-resolution (T42) greenhouse gas + aerosol forcing experiment performed using the ECHO-G/S (ECHAM4/HOPE-G) coupled model. In order to assess the impact of horizontal resolution on simulated East Asian summer monsoon climate, the differences in climate response between the time slice experiments of the present and that of IPCC SRES AR4 participating 21 models including coarser (T30) coupled model are compared. The higher resolution model from time slice experiment in the present climate show successful performance in simulating the northward migration and the location of the maximum rainfall during the rainy season over East Asia, although its rainfall amount was somewhat weak compared to the observation. Based on the present climate simulation, the possible change of East Asian summer monsoon rainfall in the future climate by the IPCC SRES A1B scenario, tends to be increased especially over the eastern part of Japan during July and September. The increase of the precipitation over this region seems to be related with the weakening of northwestern part of North Pacific High and the formation of anticyclonic flow over the south of Yangtze River in the future climate.

Vertical Distribution of Temperature and Tropopause Height Changes in Future Projections using HadGEM2-AO Climate Model (HadGEM2-AO를 이용한 연직기온 분포와 대류권계면 높이 변화 미래전망)

  • Lee, Jaeho;Baek, Hee-Jeong;Cho, Chunho
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • We present here the future changes in vertical distribution of temperature and tropopause height using the HadGEM2-AO climate model forced with Representative Concentration Pathways (RCPs) scenarios. Projected changes during the 21st century are shown as differences from the baseline period (1971~2000) for global vertical distribution of temperature and tropopause height. All RCP scenarios show warming throughout the troposphere and cooling in the stratosphere with amplified warming over the lower troposphere in the Northern Hemisphere high latitudes. Upper troposphere warming reaches a maximum in the tropics at the 300 hPa level associated with lapse-rate feedback. Also, the cooling in the stratosphere and the warming in the troposphere raises the height of the tropopause.