• Title/Summary/Keyword: global climate

Search Result 1,914, Processing Time 0.03 seconds

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Effect of High Temperature, Daylength, and Reduced Solar Radiation on Potato Growth and Yield (고온, 일장 및 저일사 조건이 감자 생육 및 수량에 미치는 영향)

  • Kim, Yean-Uk;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.2
    • /
    • pp.74-87
    • /
    • 2016
  • Potato phenology, growth, and yield are projected to be highly affected by global warming in the future. The objective of this study was to examine the responses of potato growth and yield to environmental elements like temperature, solar radiation, and daylength. Planting date experiments under open field condition were conducted using three cultivars differing in maturity group (Irish Cobbler and Superior as early; Atlantic as mid-late maturing) at eight different planting dates. In addition, elevated temperature experiment was conducted in four plastic houses controlled to target temperatures of ambient temperature (AT), $AT+1.5^{\circ}C$, $AT+3^{\circ}C$, and $AT+5^{\circ}C$ using cv. Superior. Tuber initiation onset was found to be hastened curve-linearly with increasing temperature, showing optimum temperature around $22-24^{\circ}C$, while delayed by longer photoperiod and lower solar radiation in Superior and Atlantic. In the planting date experiments where the average temperature is near optimal and solar radiation, rainfall, pest, and disease are not limiting factor for tuber yield, the most important determinant was growth duration, which is limited by the beginning of rainy season in summer and frost in the late fall. Yield tended to increase along with delayed tuber initiation. Within the optimum temperature range ($17^{\circ}-22^{\circ}C$), larger diurnal range of temperature increased the tuber yield. In an elevated temperature treatment of $AT+5.0^{\circ}C$, plants failed to form tubers as affected by high temperature, low irradiance, and long daylength. Tuber number at early growth stage was reduced by higher temperature, resulting in the decrease of assimilates allocated to tuber and the reduction of average tuber weight. Stem growth was enhanced by elevated temperature at the expense of tuber growth. Consequently, tuber yield decreased with elevated temperature above ambient and drop to almost nil at $AT+5.0^{\circ}C$.

Calibration of δ13C values of CO2 gas with different concentrations in the analysis with Laser Absorption Spectrometry (레이저흡광분석기(Laser Absorption Spectrometry)를 이용한 CO2가스의 탄소안정동위원소비 보정식 산출)

  • Jeong, Taeyang;Woo, Nam C.;Shin, Woo-Jin;Bong, Yeon-Sik;Choi, Seunghyun;Kim, Youn-Tae
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.537-544
    • /
    • 2017
  • Stable carbon isotope ratio of carbon dioxide (${\delta}^{13}C_{CO2}$) is used as an important indicator in the researches for global climate change and carbon capture and sequestration technology. The ${\delta}^{13}C$ value has been usually analyzed with Isotope Ratio Mass Spectrometer (IRMS). Recently, the use of Laser Absorption Spectrometry (LAS) is increasing because of the cost efficiency and field applicability. The purpose of this study was to suggest practical procedures to prepare laboratory reference gases for ${\delta}^{13}C_{CO2}$ analysis using LAS. $CO_2$ gas was adjusted to have the concentrations within the analytical range. Then, the concentration of $CO_2$ was assessed in a lab approved by the Korea Laboratory Accreditation Scheme and the ${\delta}^{13}C_{CO2}$ value was measured by IRMS. When the instrument ran over 12 hours, the ${\delta}^{13}C$ values were drifted up to ${\pm}10$‰ if the concentration of $CO_2$ was shifted up to 1.0% of relative standard deviation. Therefore, periodical investigation of analytical suitability and correction should be conducted. Because ${\delta}^{13}C_{CO2}$ showed the dependency on $CO_2$ concentration, we suggested the equation for calibrating the concentration effect. After calibration, ${\delta}^{13}C_{CO2}$ was well matched with the result of IRMS within ${\pm}0.52$‰.

Evaluation of Disaster Resilience Scorecard for the UN International Safety City Certification of Incheon Metropolitan City (인천시 UN 국제안전도시 인증을 위한 재난 복원력 스코어카드 평가)

  • Kim, Yong-Moon;Lee, Tae-Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.1
    • /
    • pp.59-75
    • /
    • 2020
  • This study is a case study that applied 'UNDRR's Urban Disaster Resilience Scorecard', an evaluation tool necessary for Incheon Metropolitan City to be certified as an international safe city. I would like to present an example that the results derived from this scorecard contributed to the Incheon Metropolitan City Disaster Reduction Plan. Of course, the Disaster Resilience Scorecard can't provide a way to improve the resilience of every disaster facing the city. However, it is to find the weakness of the resilience that the city faces, and to propose a solution to reduce the city's disaster risk. This is to help practitioners to recognize the disaster risks that Incheon Metropolitan City faces. In addition, the solution recommended by UNDRR was suggested to provide resilience in areas vulnerable to disasters. It was confirmed that this process can contribute to improving the disaster resilience of Incheon Metropolitan City. UNDRR has been spreading 'Climate Change, Disaster-resistant City Creation Campaign', aka MCR (Making Cities Resilient) Campaign, to cities all over the world since 2010 to reduce global cities' disasters. By applying the disaster relief guidelines adopted by UNDRR, governments, local governments, and neighboring cities are encouraged to collaborate. As a result of this study, Incheon Metropolitan city's UN Urban Resilience Scorecard was evaluated as a strong resilience field by obtaining scores of 4 or more (4.3~5.0) in 5 of 10 essentials; 1. Prepare organization for disaster resilience and prepare for implementation, 4. Strong resilience Urban development and design pursuit, 5. Preservation of natural cushions to enhance the protection provided by natural ecosystems, 9. Ensure effective disaster preparedness and response, 10. Rapid restoration and better reconstruction. On the other hand, in the other five fields, scores of less than 4 (3.20~3.85) were obtained and evaluated as weak resilience field; 2. Analyze, understand and utilize current and future risk scenarios, 3. Strengthen financial capacity for resilience, 6. Strengthen institutional capacity for resilience, 7. Understanding and strengthening social competence for resilience, 8. Strengthen resilience of infrastructure. In addition, through this study, the risk factors faced by Incheon Metropolitan City could be identified by priority, resilience improvement measures to minimize disaster risks, urban safety-based urban development plans, available disaster reduction resources, and integrated disasters. Measures were prepared.

The Standard of Judgement on Plagiarism in Research Ethics and the Guideline of Global Journals for KODISA (KODISA 연구윤리의 표절 판단기준과 글로벌 학술지 가이드라인)

  • Hwang, Hee-Joong;Kim, Dong-Ho;Youn, Myoung-Kil;Lee, Jung-Wan;Lee, Jong-Ho
    • Journal of Distribution Science
    • /
    • v.12 no.6
    • /
    • pp.15-20
    • /
    • 2014
  • Purpose - In general, researchers try to abide by the code of research ethics, but many of them are not fully aware of plagiarism, unintentionally committing the research misconduct when they write a research paper. This research aims to introduce researchers a clear and easy guideline at a conference, which helps researchers avoid accidental plagiarism by addressing the issue. This research is expected to contribute building a climate and encouraging creative research among scholars. Research design, data, methodology & Results - Plagiarism is considered a sort of research misconduct along with fabrication and falsification. It is defined as an improper usage of another author's ideas, language, process, or results without giving appropriate credit. Plagiarism has nothing to do with examining the truth or accessing value of research data, process, or results. Plagiarism is determined based on whether a research corresponds to widely-used research ethics, containing proper citations. Within academia, plagiarism goes beyond the legal boundary, encompassing any kind of intentional wrongful appropriation of a research, which was created by another researchers. In summary, the definition of plagiarism is to steal other people's creative idea, research model, hypotheses, methods, definition, variables, images, tables and graphs, and use them without reasonable attribution to their true sources. There are various types of plagiarism. Some people assort plagiarism into idea plagiarism, text plagiarism, mosaic plagiarism, and idea distortion. Others view that plagiarism includes uncredited usage of another person's work without appropriate citations, self-plagiarism (using a part of a researcher's own previous research without proper citations), duplicate publication (publishing a researcher's own previous work with a different title), unethical citation (using quoted parts of another person's research without proper citations as if the parts are being cited by the current author). When an author wants to cite a part that was previously drawn from another source the author is supposed to reveal that the part is re-cited. If it is hard to state all the sources the author is allowed to mention the original source only. Today, various disciplines are developing their own measures to address these plagiarism issues, especially duplicate publications, by requiring researchers to clearly reveal true sources when they refer to any other research. Conclusions - Research misconducts including plagiarism have broad and unclear boundaries which allow ambiguous definitions and diverse interpretations. It seems difficult for researchers to have clear understandings of ways to avoid plagiarism and how to cite other's works properly. However, if guidelines are developed to detect and avoid plagiarism considering characteristics of each discipline (For example, social science and natural sciences might be able to have different standards on plagiarism.) and shared among researchers they will likely have a consensus and understanding regarding the issue. Particularly, since duplicate publications has frequently appeared more than plagiarism, academic institutions will need to provide pre-warning and screening in evaluation processes in order to reduce mistakes of researchers and to prevent duplicate publications. What is critical for researchers is to clearly reveal the true sources based on the common citation rules and to only borrow necessary amounts of others' research.

A study on urban heat islands over the metropolitan Seoul area, using satellite images (원격탐사기법에 의한 도시열섬 연구)

  • ;Lee, Hyoun-Young
    • Journal of the Korean Geographical Society
    • /
    • v.40
    • /
    • pp.1-13
    • /
    • 1989
  • The brightness temperature from NOAA AVHRR CH 4 images was examined for the metropolitan Seoul area, the capital city of Korea, to detect the characteristics of the urban heat island for this study. Surface data from 21 meteorological stations were compared with the brightness temperatures Through computer enhancement techniques, more than 20 heat islands could be recognized in South Korea, with 1 km spatii resolution at a scale of 1: 200, 00O(Fig. 3, 4 and 6). The result of the analysis of AVHRR CH 4 images over the metropolitan Seoul area can be summerized as follows (1) The pattern of brightness temperature distribution in the metropolitan Seoul area shows a relatively strong temperature contrast between urban and rural areas. There is some indication of the warm brightness temperature zone characterrizing built-up area including CBD, densely populated residential district and industrial zone. The cool brightness temperature is asociaed with the major hills such as Bukhan-san, Nam-san and Kwanak-san or with the major water bodies such as Han-gang, and reservoirs. Although the influence of the river and reservoirs is obvious in the brightness temperauture, that of small-scaled land use features such as parks in the cities is not features such as parks in the cities is not apperent. (2) One can find a linerar relationshop between the brightenss temperature and air temperature for 10 major cities, where the difference between two variables is larger in big cities. Though the coefficient value is 0.82, one can estimate that factors of the heat islands can not be explained only by the size of the cities. The magnitude of the horizontal brightness temperature differences between urban and rural area is found to be greater than that of horizontal air temperature difference in Korea. (3) Also one can find the high heat island intensity in some smaller cities such as Changwon(won(Tu-r=9.0$^{\circ}$C) and Po-hang(Tu-r==7.1$^{\circ}$~)T. he industrial location quotient of Chang-won is the second in the country and Po-hang the third. (4) A comparision of the enhanced thermal infrared imageries in 1986 and 1989, with the map at a scale of 1:200, 000 for the meotropolitan Seoul area showes the extent of possible urbanization changes. In the last three years, the heat islands have been extended in area. zone characterrizing built-up area including (5) Although the overall data base is small, the data in Fig. 3 suggest that brightness tempeautre could ge utilized for the study on the heat island characteristics. Satellite observations are required to study and monitor the impact of urban heat island on the climate and environment on global scale. This type of remote sensing provides a meams of monitoring the growth of urban and suburban aeas and its impact on the environment.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Assessment of the Angstrom-Prescott Coefficients for Estimation of Solar Radiation in Korea (국내 일사량 추정을 위한 Angstrom-Prescott계수의 평가)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.221-232
    • /
    • 2016
  • Models to estimate solar radiation have been used because solar radiation is measured at a smaller number of weather stations than other variables including temperature and rainfall. For example, solar radiation has been estimated using the Angstrom-Prescott (AP) model that depends on two coefficients obtained empirically at a specific site ($AP_{Choi}$) or for a climate zone ($AP_{Frere}$). The objective of this study was to identify the coefficients of the AP model for reliable estimation of solar radiation under a wide range of spatial and temporal conditions. A global optimization was performed for a range of AP coefficients to identify the values of $AP_{max}$ that resulted in the greatest degree of agreement at each of 20 sites for a given month during 30 years. The degree of agreement was assessed using the value of Concordance Correlation Coefficient (CCC). When $AP_{Frere}$ was used to estimate solar radiation, the values of CCC were relatively high for conditions under which crop growth simulation would be performed, e.g., at rural sites during summer. The statistics for $AP_{Frere}$ were greater than those for $AP_{Choi}$ although $AP_{Frere}$ had the smaller statistics than $AP_{max}$ did. The variation of CCC values was small over a wide range of AP coefficients when those statistics were summarized by site. $AP_{Frere}$ was included in each range of AP coefficients that resulted in reasonable accuracy of solar radiation estimates by site, year, and month. These results suggested that $AP_{Frere}$ would be useful to provide estimates of solar radiation as an input to crop models in Korea. Further studies would be merited to examine feasibility of using $AP_{Frere}$ to obtain gridded estimates of solar radiation at a high spatial resolution under a complex terrain in Korea.

The Estimation of Gross Primary Productivity over North Korea Using MODIS FPAR and WRF Meteorological Data (MODIS 광합성유효복사흡수율과 WRF 기상자료를 이용한 북한지역의 총일차생산성 추정)

  • Do, Na-Young;Kang, Sin-Kyu;Myeong, Soo-Jeong;Chun, Tae-Hun;Lee, Ji-Hye;Lee, Chong-Bum
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.215-226
    • /
    • 2012
  • NASA MODIS GPP provides a useful tool to monitor global terrestrial vegetation productivity. Two major problems of NASA GPP in regional applications are coarse spatial resolution ($1.25^{\circ}{\times}1^{\circ}$) of DAO meteorological data and cloud contamination of MODIS FPAR product. In this study, we improved the NASA GPP by using enhanced input data of high spatial resolution (3 km${\times}$3 km) WRF meteorological data and cloud-corrected FPAR over the North Korea. The improved GPP was utilized to investigate characteristics of GPP interannual variation and spatial patterns from 2000 to 2008. The GPP varied from 645 to 863 $gC\;m^{-2}\;y^{-1}$ in 2000 and 2008, respectively. Mixed forest showed the highest GPP (1,076 $gC\;m^{-2}\;y^{-1}$). Compared to NASA GPP (790 $gC\;m^{-2}\;y^{-1}$);FPAR enhancement increased GPP (861) but utilization of WRF data decreased GPP (710). Enhancements of both FPAR and meteorological input resulted in GPP increase (809) and the improvement was the greatest for mixed forest regions (+10.2%). The improved GPP showed better spatial heterogeneity reflecting local topography due to high resolution WRF data. It is remarkable that the improved and NASA GPPs showed distinctly different interannual variations with each other. Our study indicates improvement of NASA GPP by enhancing input variables is necessary to monitor region-scale terrestrial vegetation productivity.

Effects of High Temperature on Soybean Physiology, Protein and Oil Content, and Yield (콩에 있어서 온도 상승이 생물 계절, 수량구성요소, 단백질 및 지방함량 영향 평가)

  • Lee, Yun-Ho;Sang, Wan-Gyu;Cho, Jung-Il;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.395-405
    • /
    • 2019
  • A recent assessment by the Intergovernmental Panel on Climate Change projected that the global average surface temperature will increase by a value 1.5℃ from 2030 to 2052. In this study, we used a temperature gradient chamber that mimicked field conditions to evaluate the effect of increased air temperature on phenology, yield components, protein content, and oil content, to assess soybean growth. In 2017 and 2018, 'Deawonkong', 'Pungsannamulkong', and 'Deapungkong' cultivars were grown in three temperature gradient chambers. Four temperature treatment groups were established by dividing the rows along temperature regimes: ambient temperature + 1℃ (aT+1), ambient temperature + 2℃ (aT+2), ambient temperature + 3℃ (aT+3), ambient temperature + 4℃ (aT+4). Year, cultivar, and temperature treatments significantly affected yield components and seed yield. In 2017, the flowering stage of 'Deawon' and 'Pungsannamul' cultivars in the aT+4 group was delayed compared to the flowering stage of those in the aT+1 group. In 2018, the flowering stage of 'Deawon' and 'Pungsannamul' was delayed at all temperature gradients, owing to high temperature stress, whereas 'Deapung' was regularly flowering in 2017 and 2018. The duration of the grain filling period was six days shorter in 2018 than in 2017 because of high temperature stress. The total number of pods per ㎡ for 'Deawon' and 'Pungsannamul' was 48.8 and 41.5% lower in 2018 than in 2017, respectively, whereas 'Deapung' increased by 6.3%. The 100-seed weight of 'Deawon' and 'Deapung' was 29.2 and 32.1% lower, respectively. However, 'Pungsannamul' decreased by 14.7%. The protein and oil content was lower during the grain filling period in 2018 than in the same period in 2017 because of high temperature stress. In contrast, the oil content in 'Deapung' was higher in 2018 than in 2017. Our results showed that increased temperature during the grain filling period was significantly and negatively correlated with pod number, 100-seed weight, protein content, and oil content.