Browse > Article
http://dx.doi.org/10.7780/kjrs.2012.28.2.215

The Estimation of Gross Primary Productivity over North Korea Using MODIS FPAR and WRF Meteorological Data  

Do, Na-Young (Department of Environmental Science, Kangwon National University)
Kang, Sin-Kyu (Department of Environmental Science, Kangwon National University)
Myeong, Soo-Jeong (Korea Adaptation Center for Climate Change, Korea Environment Institute)
Chun, Tae-Hun (Department of Environmental Science, Kangwon National University)
Lee, Ji-Hye (Department of Environmental Science, Kangwon National University)
Lee, Chong-Bum (Department of Environmental Science, Kangwon National University)
Publication Information
Korean Journal of Remote Sensing / v.28, no.2, 2012 , pp. 215-226 More about this Journal
Abstract
NASA MODIS GPP provides a useful tool to monitor global terrestrial vegetation productivity. Two major problems of NASA GPP in regional applications are coarse spatial resolution ($1.25^{\circ}{\times}1^{\circ}$) of DAO meteorological data and cloud contamination of MODIS FPAR product. In this study, we improved the NASA GPP by using enhanced input data of high spatial resolution (3 km${\times}$3 km) WRF meteorological data and cloud-corrected FPAR over the North Korea. The improved GPP was utilized to investigate characteristics of GPP interannual variation and spatial patterns from 2000 to 2008. The GPP varied from 645 to 863 $gC\;m^{-2}\;y^{-1}$ in 2000 and 2008, respectively. Mixed forest showed the highest GPP (1,076 $gC\;m^{-2}\;y^{-1}$). Compared to NASA GPP (790 $gC\;m^{-2}\;y^{-1}$);FPAR enhancement increased GPP (861) but utilization of WRF data decreased GPP (710). Enhancements of both FPAR and meteorological input resulted in GPP increase (809) and the improvement was the greatest for mixed forest regions (+10.2%). The improved GPP showed better spatial heterogeneity reflecting local topography due to high resolution WRF data. It is remarkable that the improved and NASA GPPs showed distinctly different interannual variations with each other. Our study indicates improvement of NASA GPP by enhancing input variables is necessary to monitor region-scale terrestrial vegetation productivity.
Keywords
Gross primary productivity; North Korea; MODIS; WRF; FPAR;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hwang, T., S. Kang, J. Kim, Y. Kim, D. Lee, and L. Band, 2008. Evaluating drought effect on MODIS Gross Primary Production (GPP) with an eco-hydrological model in the mountainous forest, East Asia. Global Change Biology, 14: 1037-1056.   DOI   ScienceOn
2 Heinsch, F.A., M. Reeves, C.F. Bowker, P. Votava, S. Kang, C. Milesi, M. Zhao, J. Glassy, W.M. Jolly, J.S. Kimball, R.R. Nemani, and S.W. Running, 2003. User's guide: GPP and NPP (MOD17A2/A3) products, NASA MODIS Land Algorithm, http://www.forestry, umt, edu/ntsg/.
3 Kang, S., S.W. Running, M. Zhao, and J.S. Kimball, 2005. Improving continuity of MODIS terrestrial photosynthesis products using an interpolation scheme for cloudy pixels, International Journal of Remote Sensing, 26(8): 1659-1676.   DOI   ScienceOn
4 Kim, W.K., H. Lee, and D.A. Sumner, 1998. Assessing the Food Situation in North Korea, Economic Development and Cultural Change, 46(3): 519-535.   DOI
5 Lynn, B. and Y. Yair, 2010. Prediction of lightning flash density with the WRF model, Advances in Geosciences, 23: 11-16.   DOI
6 Maselli, F., A. Barbati, M. Chiesi, G. Chirici, and P. Corona, 2006. Use of remotely sensed and ancillary data for estimating forest gross primary productivity in Italy, Remote Sensing of Environment, 100: 563-575.   DOI
7 MODIS WIST, http://wist.echo.nasa.gov/api.
8 Molders, N., 2008. Suitability of the Weather Research and Forecasting (WRF) Model to Predict the June 2005 Fire Weather for Interior Alaska, American Meteorological Society, 23: 953-973.
9 Monteith, J.L., 1977. Climate and the efficiency of crop production in Britain, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 281: 277-294.   DOI
10 강신규, 2005. MODIS 엽면적지수 및 일차생산성 영상의 구름 영향 오차 분석: 우리나라 몬순기후의 영향, 한국생태학회지, 28(4): 215-222.   과학기술학회마을   DOI
11 강신규, 김영일, 김영진, 2005. MODIS 총일차생산성 산출물의 오차요인 분석: 입력기상자료의 영향, 한국농림기상학회지, 7(2): 171-183.   과학기술학회마을
12 명수정, 김순아, 김지영, 권현한, 2009. 북한의 가뭄재해 취약지 분석 및 남북협력 방안, 한국환경정책.평가연구원.
13 Byon, J.Y., J.S. Kim, J.Y. Kim, B.C. Choi, Y.J. Choi, and A. Graetz, 2008. A study on the characteristics of perceived temperature over the Korean peninsula during 2007 summer, Atmosphere, 18(2):137-146.
14 Cao, M., S.D. Prince, J. Small, and S.J. Goetz, 2004. Remotely Sensed Interannual Variations and Trends in Terrestrial Net Primary Productivity 1981-2000, Ecosystems, 7: 233-242.
15 Davitashvili, T., R. Kvatadze, and N. Kutaladze, 2011. Weather Prediction Over Caucasus Region Using WRF-ARW Model, MIPRO 2011, May 23-27, 2011, Opatija, Croatia.
16 Friedl, M.A., D.K. McIver, J.C.F. Hodges, X.Y. Zhang, D. Muchoney, A.H. Strahler, C.E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, 2002. Global land cover mapping from MODIS: algorithms and early results. Remote Sensing of Environment, 83: 287-302.   DOI
17 Running, S.W., P.E. Thornton, R.R. Nemani, and J.M. Glassy, 2000. Global terrestrial gross and net primary productivity from the earth observing system, Methods in Ecosystem Science, O.E. Sala, R.B. Jackson, H.A. Mooney, and R.W. Howarth (Eds.), Springer-Verlag, New York.
18 Mu, Q., M. Zhao, F.A. Heinsch, M. Liu, H. Tian, and S.W. Running, 2007. Evaluating water stress controls on primary production in biogeochemical and remote sensing based models, Journal of Geophysical Research, 112: 1- 13.
19 Peng, D.L., J. F. Huang, C.X. Cai, R. Deng, and J.F. Xu, 2008. Assessing the Response of Seasonal Variation of Net Primary Productivity to Climate Using Remote Sensing Data and Geographic Information System Techniques in Xinjiang, Journal of Integrative Plant Biology, 50(12): 1580-1588.   DOI
20 Running, S.W., D. Baldocchi, D. Turner, S.T. Gower, P. Bakwin, and K. Hibbard, 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data, Remote Sensing of Environment, 70: 108-127.   DOI
21 Running, S.W., R.R. Nemani, F.A. Heinsch, M. Zhao, M.C. Reeves, and H. Hashimoto, 2004. A continuous satellite-derived measure of global terrestrial primary production, BiosScience, 54: 547-560.
22 Sims, D.A., A.F. Rahman, V.D. Cordova, B.Z. El- Masri, D.D. Baldocchi, P.V. Bolstad, L.B. Flanagan, A.H. Goldstein, D.Y. Hollinger, L. Misson, R.K. Monson, W.C. Oechel, H.P. Schmid, S.C. Wofsy, and L. Xu, 2008. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS, Remote Sensing of Environment, 112: 1633-1646.   DOI
23 Zhao, M., F.A. Heinsch, R.R. Nemani, and S.W. Running, 2005. Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sensing of Environment, 95: 164-176.   DOI
24 Xiao, J., Q. Zhuang, B.E. Law, J. Chen, D.D. Baldocchi, D.R. Cook, R. Oren, A.D. Richardson, S. Wharton, S. Ma, T.A. Martin, S.B. Verma, A.E. Suyker, R.L. Scott, R.K. Monson, M. Litvak, D.Y. Hollinger, G. Sun, K.J. Davis, P.V. Bolstad, S.P. Burns, P.S. Curtis, B.G. Drake, M. Falk, M.L. Fischer, D.R. Foster, L. Gu, J.L. Hadley, G.G. Katul, R. Matamala, S. McNulty, T.P. Meyers, J.W. Munger, A. Noormets, W.C. Oechel, K.T. P. U, H.P. Schmid, G. Starr, M.S. Torn, and S.C. Wofsy, 2010. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data, Remote Sensing of Environment, 114: 576-591.   DOI