• Title/Summary/Keyword: global climate

Search Result 1,914, Processing Time 0.036 seconds

Long-term Elevated Temperature Affects the Growth and Quality of 'Shiranuhi' Mandarin Grown in a Green House (장기간 온도상승이 시설재배 '부지화'의 수체 생장 및 과실 품질에 미치는 영향)

  • Misun Kim;Young-Eel Moon;Sang Suk Kim;Jaeho Joa;Seok Kyu Yun;YoSup Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.318-327
    • /
    • 2022
  • BACKGROUND: The mean annual temperature of the Korean Peninsula will continue to rise due to global warming. 'Shiranuhi' mandarin-a late-harvest cultivar-is primarily cultivated in plastic greenhouses where high temperatures cannot be directly avoided. Therefore, growth and fruit quality changes under elevated temperatures must be investigated. METHODS AND RESULTS: Elevated temperatures were divided into three groups [2℃ (T-I), 4℃ (T-II), and 6℃ (T-III) above the ambient temperature] during the 2019-2020 season. Mean temperatures were 17.1℃, 18.6℃, and 20.2℃ in T-I, T-II, and T-III, respectively. The bud bursts in T-II and T-III were earlier than that in T-I at 7 days and 11 days, respectibely. And the full blooms in T-II and T-III were earlier than that in T-I at 11 days and 23 days, respectively. Fruit size significantly increased with increased temperature. The citrus color index in the coloring phase markedly differed across treatments. Further, total soluble solid and acid contents markedly changed with temperature rise but the sugar-to-acid ratio did not. Sucrose content tended to decrease with increase in temperature, but citric acid content remained unaffected. CONCLUSION(S): Elevated temperature accelerated plant growth and development but delayed rind color development in 'Shiranuhi' mandarin. Therefore, rise in ambient temperature by >4.6℃ may negatively affect yield and fruit quality.

Investigating the Effects of Meteorological Disasters on Hydroelectric Power Generation Using a Structural Equation Modeling (구조방정식모형을 이용한 기상재해가 수력발전을 통한 전력 생산에 미치는 영향 분석)

  • Kim, Jiyoung;Byun, Sung ho;Yoo, Jiyoung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • Recently, global warming has accelerated climate change, increased extreme weather phenomena, and increased the frequency and intensity of weather disasters, leading to increasing uncertainty about the power production of new and renewable energy that is sensitive to weather. In fact, it has been reported that a number of damage to hydroelectric power generation have occurred due to weather disasters. Therefore, using the hydroelectric power generation performance data of Chungju Dam, meteorological data of Chungju Meteorological Observatory, and operation data of Chungju Dam, this study investigated the effect of meteorological disasters on hydroelectric power generation through structural equation modeling considering the number and intensity of meteorological disasters per month. The results indicated that the increased drought occurrence affected the decreased hydroelectric power generation by about 38.3 %, however the increased hydroelectric power generation could not explained by the increased flood occurrence. In conclusion, an increased drought occurrence in future may significantly influence hydroelectric power generation.

A quantitative analysis of greenhouse gases emissions from catching swimming crab and snow crab through cross-analysis of multiple fisheries (다수 업종의 교차분석을 통한 꽃게 및 대게 어획 시 온실가스 배출량의 정량적 분석)

  • Gunho LEE;Jihoon LEE;Sua PARK;Minseo PARK
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.19-27
    • /
    • 2023
  • The interest in greenhouse gases (GHG) emitted from all industries is emerging as a very important issue worldwide. This is affecting not only the global warming, but also the environmentally friendly competitiveness of the industry. The fisheries sector is increasingly interested in greenhouse gas emissions also due to the Paris Climate Agreement in 2015. Korean industry and government are also making a number of effort to reduce greenhouse gas emissions so far, but the effort to reduce GHG in the fishery sector is insufficient compared to other fields. Especially, the investigation on the GHG emissions from Korean fisheries did not carry out extensively. The studies on GHG emissions from Korean fishery are most likely dealt with the GHG emissions by fishery classification so far. However, the forthcoming research related to GHG emissions from fisheries is needed to evaluate the GHG emission level by species to prepare the adoption of Environmental labels and declarations (ISO 14020). The purpose of this research is to investigate which degree of GHG emitted to produce the species (swimming crab and snow crab) from various fisheries. Here, we calculated the GHG emission to produce the species from the fisheries using the life cycle assessment (LCA) method. The system boundary and input parameters for each process level are defined for LCA analysis. The fuel use coefficients of the fisheries for the species are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for producing the unit weight species and annual production are calculated by fishery classification. The results will be helpful to establish the carbon footprint of seafood in Korea.

Development of Decision Support System for Flood Forecasting and Warning in Urban Stream (도시하천의 홍수예·경보를 위한 의사결정지원시스템 개발)

  • Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.743-750
    • /
    • 2008
  • Due to unusual climate change and global warming, drought and flood happen frequently not only in Korea but also in all over the world. It leads to the serious damages and injuries in urban areas as well as rural areas. Since the concentration time is short and the flood flows increase urgently in urban stream basin, the chances of damages become large once heavy storm occurs. A decision support system for flood forecasting and warning in urban stream is developed as an alternative to alleviate the damages from heavy storm. It consists of model base management system based on ANFIS (Adaptive Neuro Fuzzy Inference System), database management system with real time data building capability and user friendly dialog generation and management system. Applying the system to the Tanceon river basin, it can forecast and warn the stream flows from the heavy storm in real time and alleviate the damages.

Key Factors Affecting the Development of Public-Private Partnerships in Water and Wastewater Services in the Jiangsu Province, China

  • Oh, Jihye;Lee, Seungho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.211-211
    • /
    • 2022
  • The marketization reform from the open-door policy in 1978 was not only booming export-oriented industries with foreign investment but also expanding the role of private actors in the Chinese water sector. Private Sector Participation (PSP) has become an important element in developing urban infrastructure by providing better services with advanced facilities. The rapid development of PSP-driven urban water infrastructure in China has a positive impacted on Chinese economic development, particularly in coastal areas. PPPs in some coastal areas have successfully spread out over China since China applied the first Build-Operate-Transfer (BOT) mode in the water sector in the early 1990s. The market-oriented water and wastewater, Public-Private Partnership (PPP) mechanism in the initial period of China has been transformed into a state-dominated PPP mechanism. The development pattern of the water and wastewater PPPs in China has been divided in four stages: the first period from 1984 to 2002, the second period from 2003 to 2008, the third period from 2009 to 2014, and the last period after 2015. The study aims to investigate the successful process of water and wastewater PPPs in local areas through five socioeconomic elements: export-oriented economic strategy, urbanization, cheap land policy, infrastructure investment, and water issues and climate change. In addition, the study focuses on analyzing the extent to which the Chinese government re-asserted its control over the PPP mechanism by classifying five elements in three different development Phases from early 2000 to 2020. The Jiangsu Province in the estern coastal area has actively invited PPP projects in the water and wastewater sectors. The successful introduction and rapid growth of PPPs in the urban water infrastructure has made the province an attractive area for a foreign investor.

  • PDF

Evaluation of the snow simulations from CLM using satellite-based observations (위성 관측 자료를 활용한 지면모형(CLM)의 적설 모의 평가)

  • Seo, Jungho;Seo, Hocheol;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.332-332
    • /
    • 2022
  • 적설은 지구 기후시스템과 수문순환 과정에서 중요한 역할을 하고 있으며, 겨울철의 적설은 봄철에 녹으면서 식생과 수자원 제공에 큰 영향을 주는 인자로 알려져 있다. 동아시아가 위치한 북반구는 적설량의 90%가 관찰되고 토지의 약 42%가 긴 시간동안 눈으로 덮여 있어 지표 에너지와 물 균형에 영향을 주고, 특히 수자원 관리를 위한 유출이나 토양수분과 같은 수문 인자에 큰 영향을 미친다. 따라서 적설을 정확하게 예측하는 것은 수자원 관리에 있어 매우 중요한 일이다. 한편, 이러한 수문 순환을 정확히 예측하기 위해 수문 분야에서는 지면모형(Land Surface Model, LSM)을 많이 사용하고 있다. 지면모형은 지표면과 대기 사이의 상호작용을 모의하기 위해 개발되었고, 에너지, 수증기, 이산화탄소 등의 다양한 인자들의 교환에 대하여 해석하며, 토양수분, 유출량 등의 수자원 분야의 주요 인자들을 산출하여 수자원 관리에 적극적으로 활용되고 있다. 이에 본 연구에서는 National Center for Atmospheric Research(NCAR)에서 개발한 Community Land Model(CLM)을 사용하여 2001년부터 2016년까지 25km의 공간해상도로 동아시아 지역의 적설 모의를 평가하였다. CLM의 적설 모의 평가 인자는 Snow depth, Snow water equivalent의 2가지 인자를 대상으로 수행하였고, 모의 성능 평가를 위한 관측 자료로 NASA Aqua와 JAXA GCOM-W1 위성에 탑재된 Advanced Microwave Scanning Radiometer(AMSR) 센서에서 제공하는 위성 관측 자료와 Defense Meteorological Satellite Program(DMSP) 위성의 Special Sensor Microwave/Imager(SSM/I) 센서와 Nimbus-7 위성의 Scanning Multichannel Microwave Radiometer(SMMR) 센서에서 제공하는 위성 관측 자료를 기반으로 지상 기상 관측소 자료와 조합하여 재생성한 European Space Agency Global Snow Monitoring for Climate Research (ESA GlobSnow)의 자료를 사용하였다. 그 결과 CLM의 적설 모의는 과대 추정하는 것을 알 수 있었으며, 본 연구의 결과는 동아시아 적설 모의 개선을 위해 자료 동화를 사용하는 후속 연구의 기초자료로 사용할 수 있다.

  • PDF

Uncertainty Analysis based on LENS-GRM

  • Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.208-208
    • /
    • 2022
  • Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.

  • PDF

Analysis on Hydrometeorological Components over Asia under Global Warming (지구온난화에 따른 아시아 지역의 수문기상성분 분석)

  • Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.327-327
    • /
    • 2022
  • 지구온난화로 전 세계는 기후위기에 직면해있다. 특히, 아시아의 경우 복사강제력과 대규모 대기순환인 몬순이 지역기후에 영향을 주기 때문에 지리적 위치 및 계절에 따라 폭염, 홍수, 가뭄 등 다양한 기상이변 및 수재해 문제를 겪고 있다. 더욱이, 아시아 지역은 온난화가 심화됨에 따라 식량 및 물 안보위기가 더욱 증가할 것으로 전망됨에 따라 이와 직결되는 기후 및 수문특성에 대한 기후변화 영향평가 및 분석이 요구된다. 본 연구에서는 미래 기온상승 조건을 고려하여 아시아 지역의 기후특성을 전망하고, 수문모형(VIC)을 활용하여 수문전망을 수행하였다. 미래 기후전망을 위해 적정 CMIP6 기후모델과 공통사회경제경로(SSP5-8.5) 시나리오를 활용하였다. 시나리오로부터 산출된 기온자료 및 CPC (Climate Prediction Center) 전 지구 관측 기온자료를 활용하여 산업화 이전 대비 잠재적인 전지구 기온상승(1.5℃~5.0℃) 조건을 추정하였다. 통계적상세화 기법을 적용하여 아시아 지역에 대하여 기후변화 시나리오를 상세화하고, 기후구분법을 적용하여 기후대를 구분하였다. 미래 기온상승 조건 하에서 아시아 지역의 기후특성을 전망하고 기후대의 분포변화를 분석하였다. 전 지구 기온이 상승함에 따라 지역별 기후특성이 변화하였으며, 이는 기온 및 강수량 변화에 기인하는 것으로 분석되었다. 최고 및 최저기온은 모든 기후대의 전 지역에서 상승하며, 이는 평균적으로 전 지구 평균 기온을 상회하였다. 강수량 및 강수일수는 대체로 증가하였으나, 기후특성에 따라 지역별 편차를 보였다. 기상성분의 변화로 기후대별 수문성분(증발산량, 유출량)은 대체로 증가하였으며, 극한 유출량의 변화경향은 모든 기후대에서 증가할 것으로 전망되었다. 지속적인 지구온난화는 아시아 지역의 수문순환은 가속화할 것으로 전망되며, 기후대별 수문기상성분의 변화는 지역의 기후특성에 따라 편차가 있는 것으로 분석되었다. 지구온난화 조건별 아시아 지역의 미래 기후 및 수문기상성분 변화 특성은 기상 및 수자원에 대한 기후변화 영향평가 시 기초자료로 활용될 수 있다.

  • PDF

Simulation and Analysis of Wildfire for Disaster Planning and Management

  • Yang, Fan;Zhang, Jiansong
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.443-449
    • /
    • 2022
  • With climate change and the global population growth, the frequency and scope of wildfires are constantly increasing, which threatened people's lives and property. For example, according to California Department of Forestry and Fire Protection, in 2020, a total of 9,917 incidents related to wildfires were reported in California, with an estimated burned area of 4,257,863 acres, resulting in 33 fatalities and 10,488 structures damaged or destroyed. At the same time, the ongoing development of technology provides new tools to simulate and analyze the spread of wildfires. How to use new technology to reduce the losses caused by wildfire is an important research topic. A potentially feasible strategy is to simulate and analyze the spread of wildfires through computing technology to explore the impact of different factors (such as weather, terrain, etc.) on the spread of wildfires, figure out how to take preemptive/responsive measures to minimize potential losses caused by wildfires, and as a result achieve better management support of wildfires. In preparation for pursuing these goals, the authors used a powerful computing framework, Spark, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO), to study the effects of different weather factors (wind speed, wind direction, air temperature, and relative humidity) on the spread of wildfires. The test results showed that wind is a key factor in determining the spread of wildfires. A stable weather condition (stable wind and air conditions) is beneficial to limit the spread of wildfires. Joint consideration of weather factors and environmental obstacles can help limit the threat of wildfires.

  • PDF

Breeding of Early Heading Date with High Yield Using CRISPR/Cas9 in Rice

  • Eun-Gyeong Kim;Jae-Ryoung Park;Yoon-Hee Jang;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.285-285
    • /
    • 2022
  • Recent unpredictable climate change is a major cause of rice yield loss. In particular, methane is a key factor in global warming. Therefore rice breeders are trying to breed the reducing-methane gas emission rice using the crossbreeding method. However, the traditional crossbreeding method takes 8 to 10 years to breed a cultivar, and the anther culture method developed to shorten the breeding cycle also takes 6 to 7 years. On the other hand, CRISPR/Cas9 accurately edits the target trait and can rapidly breed rice cultivars by editing the target trait as a homozygous in 2-3 years. In addition, exogenous genetic elements such as Cas9 can be isolated from the G1 generation. Therefore, the flowering time was regulated by applying CRISPR/Cas9 technology, and OsCKq1 genome-editing (OsCKq1-G) rice with early flowered and high yield was bred in the field. Genome-editing of OsCKq1 applied CRISPR/Cas9 technology up-regulates the expression of the flowering promotion gene Ehd1 under long-day conditions induces early flowering and increases the yield by increasing the 1,000-grain weight. And as the generations advanced, each agricultural trait indicated a low coefficient of variation. As a result, indicated that OsCKq1 plays an important role in regulating the flowering time and is related to the trait determining yield. Therefore, OsCKq1-G can suggest a breeding strategy for the Net-Zero national policy for reducing-methane gas emission rice by shortening the breeding cycle with the early flowered, and high-yield rice. CRISPR/Cas9 technology is a rapid and accurate breeding technology for breeding rice cultivars with important characteristics.

  • PDF