• Title/Summary/Keyword: glass transition temperature(Tg)

Search Result 141, Processing Time 0.025 seconds

Nonlinear Dielectric Relaxation in VDCN/VPr Copolymer (VDCN/VPr 공중합체(共重合體)의 비선형(非線形) 유전특성(誘電特性))

  • Lee, Duck-Chool;Kang, Dae-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.356-358
    • /
    • 1989
  • Linear and nonlinear complex permittivities have been measured for an alternating copolymer of vinylidene cyanide(VSCN) with vinyl propionale(VPr). It is found that the third order permittivity ${\varepsilon}_3$ depends upon frequency according to a function V ${\varepsilon}_3$/ ${1+(j{\omega}{\tau}_3)^{\beta}}^3$ while the linear permittivity ${\varepsilon}_1$obeys a Debye type function ${\nabla}{\varepsilon}_1$/ {1+$(j{\omega}{\tau}_1)^{\beta}$}. Experimental results are well fitled by predicted functions except at low frequency where dc conduction dominates. The relaxation times ${\tau}_1$ and ${\tau}_3$ at same teperature are nealy equal and depend upon temperature according to WLF form. The relaxation strengths ${\nabla}{\varepsilon}_1$ and ${\nabla}{\varepsilon}_3$ have a peak at the vicinity of glass transition temperature (Tg). The strength ${\nabla}{\varepsilon}_1$ has a value of -9 order and ${\nabla}{\varepsilon}_3$ has a negative value of -25 order. The analysis of mechanism by combined knowledge about linear and nonlinear permittivities and dipole moment gives us an imformation of the electrical and thermal dipolar motions in this copolymer.

  • PDF

Oxidation Properties of Polychloroprene by Irradiation Degradation (방사선 열화에 따른 Polychloroprene의 산화특성)

  • Kim, Ki-Yup;Kang, Hyun-Koo;Ryu, Boo-Hyung;Lee, Chung;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.456-459
    • /
    • 2003
  • Polychloroprene(CR) is well known as elastomer commonly utilized in the electrical. It is mainly used for cable jacket and insulator. The irradiation degradation property of polymer materials is very important to prevent unexpected accidents in the Nuclear Power Plant(NPP). The irradiation degradation is caused by the oxidation of polymer materials, and this oxidation is occurred by oxygen radical produced from air. In this study, we evaluate the oxidation properties of CR. CR is irradiated for 200, 400, 600, 1000 kGy radiation dose. The oxidation properties of irradiated CR are investigated by differential scanning calorimetry, dynamic mechanical properties and FT-IR/ATR. Glass transition temperature(Tg), decomposition onset temperature(DOT), loss modulus and mechanical tan $\delta$ values are compared together. The irradiation limit of CR in the NPP, is known for 500 kGy, and this is exactly matched with investigated results.

  • PDF

Kinetic Study on the Thermal Degradation of Poly(Methyl Methacrylate) and Poly(Acrylonitrile Butadiene Styrene) Mixtures (Poly(methyl methacrylate)와 Poly(acrylonitrile butadiene styrene)와의 혼합에 의한 열분해속도에 관한 연구)

  • Moon, Deok-Ju;Kim, Dong-Keun;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.24 no.1
    • /
    • pp.11-18
    • /
    • 1989
  • The thermal degradation of Poly(methyl methacrylate) (PMMA) and poly(acrylonitrile butadiene styrene)(ABS) terpolymer as well as their mixtures were carried out using the thermogravimetry and differential scanning calorimetry(DSC) in the stream of nitrogen and air with 50 ml/min at the various heating rate from 4 to $20^{\circ}C/min$ and temperature from 200 to $300^{\circ}C$ The values of activation energies of thermal degradation determined by TG and DSC in the various PMMA/ABS mixtures were $34{\sim}58Kcal/mol,\;35{\sim}54Kcal/mol$ in the stream of nitrogen. The values of activation energy of ABS20% mixture was appeared high in camparison with addition rule. According to increasing the composition of ABS, the temperatures of glass transition and initial decomposition temperature were increased. PMMA/ABS mixtures by the analysis of infrared spectrophotometer were decomposed by main chain scission in the stream of nitrogen.

  • PDF

Properties and Preparation of PVA/Silica Hybrid Films by Sol-Gel Method (졸-겔법에 의한 PVA/Silica 하이브리드 필름의 제조 및 특성)

  • Kim, Tae-Hyoung;Lee, Jin-Hwa;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.317-322
    • /
    • 1999
  • Transparent films were prepared using the sol-gel process by mixing TEOS with PVA solution that was solved in EtOH and distilled water homogeneously. HCl, $CH_3COOH$ and $NH_4OH$ were used as catalysts of the sol-gel process, and for improving the flexibility of films glycerol was used as plasticizer. In case of each catalyst, transparency and tensile strength were increased, and glass transition temperature (Tg) was shifted to higher temperature with increasing TEOS ratio. Also, in case of adding the plasticizer, the flexibility of films was increased. On the contrary, transparency, thermal stability and tensile strength were decreased with increasing HCl and $NH_4OH$ ratio. Also, the range of being made of film type was expanded when $CH_3COOH$ was used than HCl and $NH_4OH$.

Synthesis and Characteristics of Aminated Poly(arylene ether sulfone) as Thermostable Anion Exchanger (내열성 음이온교환수지로서 Aminated Poly(arylene ether sulfone)의 합성과 물성)

  • 손원근;유현지;황택성;김동철;김상헌;송해영
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • In this study, poly(arylene ether sulfone) (PAES) having thermal stability and excellent mechanical properties was synthesized to be useful for the matrix of anion exchange resin. $1^{\circ}$-Aminated poly(arylene ether sulfone) ($1^{\circ}$-APAES) was prepared by reduction reaction after lithiation of PAES. Then $3^{\circ}$-APAES was Prepared by alkylation of the amino group of $1^{\circ}$-APAES. The structures of PAES and APAESs were confirmed with FT-IR and $^1H-NMR$ spectroscopy. Also, thermal properties of the resins were characterized by DSC and TG analysis. The introduction of amine groups in PAES resulted in the increase of glass transition temperature and decrease of initial thermal degradation temperature. The ion exchange capacities of $1^{\circ}$-APAES and $1^{\circ}$-APAES were 1.19 and 1.45 meq/g, respectively.

A Study on the Synthesis and Curing Characteristics of PPG-type Polyurethane Methacrylates (PPG계 Polyurenthane Methacrylates의 합성과 경화특성)

  • Kim, Ju-Young;Suh, Kung-Do
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.627-638
    • /
    • 1992
  • PPG and BPA-type polyurethane prepolymers(NCO terminated) were obtained from bisphenol A and four types of PPG, having different molecular weight and numbers of functional groups. PPG and BPA-type polyurethane dimethacrylates were synthesized by reacting PPG and BPA-type polurethane prepolymer with 2-HEMA respectively. PPG-type polyurethane dimethacrylates were formulated with initiator(CHP), inhibitor(hydroquinone) and reactive diluent(TEGDMA). The effect of formulation on the torque changes was studied. Four kinds of PPG-type polyurethane dimethacrylates, having different molecular weight and numbers of functional group, were formulated with the same amount of CHP, TEGDMA and hydroquinone. The effects of the molecular weight of PPG-type polyurethane dimethacrylate and functional group numbers of PPG-type polyurethane dimethacrylates on the torque were investigated. These results showed that the torque of PPG-type polyurethane dimethacrylates, having same numbers of functional group, increased with decreasing molecular weight of dimethacrylates and torque of PPG-type polyurethane dimethacrylate, having similar molecular weight, was increased with increasing the number of fuctional group. The glass-transition temperature(Tg) of gels obtained by thermosetting cure for the four kinds of PPG-type polyurethane dimethacrylates were measured by DSC and molecular weights between cross-links(Mc) were calculated from Tg changes.

  • PDF

The Change of Physical Properties of Epoxy Molding Compound According to the Change of Softening Point of ο-Cresol Novolac Epoxy Resin (올소 크레졸 노볼락 에폭시 수지 연화점 변화에 따른 에폭시 몰딩 컴파운드의 물성 변화)

  • Kim, Hwan Gun;Ryu, Je Hong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.81-86
    • /
    • 1996
  • The physical properties of epoxy molding compound (EMC) according to the change of softening point of epoxy resin have been investigated in order to study the relationship between the properties of o-cresol novolac epoxy resin, which is main component of EMC for semiconductor encapsulation, and EMC. The softening points of used epoxy resin are 65.1 $^{\circ}C$, 72.2 $^{\circ}C$, and 83.0 $^{\circ}C$, respectively. The flexural strength and flexural modulus as mechanical properties were measured, and thermal expansion coefficient, thermal conductivity and glass transition temperature (Tg) as thermal properties, and spiral flow as moldability have been investigated to see the change of physical properties of EMC. The flexural modulus, thermal expansion coefficients in the glass state (${\alpha}_1$), and thermal conductivity of EMC were found to be keep constant value irrespective of the change of softening point, but Tg increased with softening point of epoxy resin, and the spiral flow decreased with that. It can be considered that these phenomena are due to the increase of crosslinking density of EMC according to the increase of softening point. The transition points were found out in the thermal expansion coefficient data in the rubbery state (${\alpha}_2$) and the flexural strength data. These can show the decrease of filler dispersion according to increase of epoxy resin viscosity.

  • PDF

Preparation and Characteristics of Polymer Additives for Functional Instant Adhesives (기능성 순간접착제용 중합체 첨가제의 제조 및 특성)

  • Ihm, H.J.;Ahn, K.D.;Kim, S.B.;Kim, E.Y.;Han, D.K.
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • Ethyl cyanoacrylate (ECA) is used as an instant adhesive, and it can be readily polymerized by moisture in air without any initiator and applied for industrial products and ohome use. However, pure ECA monomer is low-viscosity liquid at room temperature that flows into substrate surface. To thicken the instant adhesive, poly(methyl methacylate)(PMMA) is often added in it commercially. Another disadvantage of instant adhesive polymer is its brittleness In this study, functional polymers including PMMA for an additive of ECA were prepared to increase viscosity of the monomer and flexibility of the adhesive atthe same time The additives, P(MMA-VAc-EVE), were synthesized by radical copolymerization of MMA with VAc and EVE having low glass transition temperature (Tg). The additives were added to ECA to get functional instant adhesives. The chemical structures of the additives and ECA polymers were confirmed by $^1H$ NMR and FTIR, and their physical and mechanical properites were also evaluated. The Tg of the obtained additives decreased with increasing the content of VAc or VAc-EVE, indicating more improved flexibility. In addition, functional instant adhesive containing the additives showed higher bonding strength than that of the existing one.

  • PDF

Warpage and Solder Joint Strength of Stacked PCB using an Interposer (인터포저를 이용한 Stacked PCB의 휨 및 솔더 조인트 강도 연구)

  • Kipoong Kim;Yuhwan Hwangbo;Sung-Hoon Choa
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.40-50
    • /
    • 2023
  • Recently, the number of components of smartphones increases rapidly, while the PCB size continuously decreases. Therefore, 3D technology with a stacked PCB has been developed to improve component density in smartphone. For the s tacked PCB, it i s very important to obtain solder bonding quality between PCBs. We investigated the effects of the properties, thickness, and number of layers of interposer PCB and sub PCB on warpage of PCB through experimental and numerical analysis to improve the reliability of the stacked PCB. The warpage of the interposer PCB decreased as the thermal expansion coefficient (CTE) of the prepreg decreased, and decreased as the glass transition temperature (Tg) increased. However, if temperature is 240℃ or higher, the reduction of warpage is not large. As FR-5 was applied, the warpage decreased more compared to FR-4, and the higher the number and thickness of the prepreg, the lower the warpage. For sub PCB, the CTE was more important for warpage than Tg of the prepreg, and increase in prepreg thickness was more effective in reducing the warpage. The shear tests indicated that the dummy pad design increased bonding strength. The tumble tests indicated that crack occurrence rate was greatly reduced with the dummy pad.

Mechanical and Electrical Properties of Cycloaliphatic Epoxy/Silica Systems for Electrical Insulators for Outdoor Applications

  • Park, Jae-Jun;Kim, Jae-Seol;Yoon, Chan-Young;Shin, Seong-Sik;Lee, Jae-Young;Cheong, Jong-Hoon;Kim, Young-Woo;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.82-85
    • /
    • 2015
  • Mechanical and electrical properties of epoxy/silica microcomposites were investigated. The cycloaliphatic- type epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and the curing agent was of an anhydride type. To measure the glass transition temperature (Tg), dynamic differential scanning calorimetry (DSC) analysis was carried out, and tensile and flexural tests were performed using a universal testing machine (UTM). Electrical breakdown strength, the most important property for electrical insulation materials, and insulation breakdown strength were also tested. The microcomposite with 60 wt% microsilica showed maximum values in mechanical and electrical properties.