• Title/Summary/Keyword: glass transition temperature$(T_g)$

Search Result 219, Processing Time 0.025 seconds

Glass Transition Behavior of Dendritic Polymers Containing Mobile Aliphatic Polyether Cores and Glassy Peripheral Polystyrenes

  • Song, Jie;Cho, Byoung-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1167-1172
    • /
    • 2008
  • We investigated the glass transition temperatures ($T_g$) of dendrons consisting of conformationally mobile aliphatic polyether dendritic cores plus glassy peripheral polystyrenes (PSs), and linear PSs in the molecular weight range of 1000-8500 g/mol. We compared their $T_g$ behavior depending on their polymeric architecture. The linear PSs show a typical growth of $T_g$ up to 92.5 ${^{\circ}C}$ as the molecular weight increases to 8300 g/mol, while the dendrons display nearly constant $T_g$ values of 58-61 ${^{\circ}C}$, despite the increase of molecular weight with each generation. The striking contrast of Tg behavior would be mainly attributed to the fact that the dendrons keep the ratio of $N_e$/M ($N_e$: number of peripheral chain ends, M: molecular weight) over all the generations. Additionally, for the influence of dendritic spacers on glass transition temperature we prepared dimeric PSs with different linkage groups such as aliphatic ether, ester and amide bonds. We found that the dimer with the ether spacer exhibited the lowest glass transition at 55.4 ${^{\circ}C}$, while the amide linked dimer showed the highest glass transition temperature at 74.2 ${^{\circ}C}$. This indicates that the peripheral PS chains are effectively decoupled by the conformationally flexible ether spacer. The results from this study demonstrated that polymeric architecture and dendritic core structures play a crucial role in the determination of glass transition behavior, providing a strategy for the systematic engineering of polymer chain mobility.

Effect of Transition Metal on the Thermal Stability and Mechanical Property of Fe-based Amorphous Alloys (Fe기 비정질합금의 열적안정성 및 기계적 성질에 미치는 천이금속의 영향)

  • Gook, Jin Seon;Yoon, Dong Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.6
    • /
    • pp.345-349
    • /
    • 2001
  • This study has investigated the effect of thermal stability and mechanical property of $Fe_{80-X}P_{10}C_6B_4M_X$(X=2, 4, 6, M=transition metal) amorphous alloys fabricated by the melt-spun process. The glass transition temperature($T_g$), crystallization temperature($T_x$) and hardness increase with decreasing electron concentration (e/a) from about 7.38 to 7.18. The decrease of e/a implies the increase in the attractive bonding state between the M elements and other constituent element. The decrease in a/e leads to the enhancement of the attractive bonding state among the constituent elements which is favorable for the increase in $T_g$, $T_x$ and hardness.

  • PDF

Existence of a vortex-glass phase transition in an optimally doped BaFe1.8Co0.2As2 single crystal

  • Choi, Ki-Young;Kim, Kee Hoon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.16-19
    • /
    • 2013
  • The magneto-resistivity and electric field-current density (E-J) curves were investigated up to a magnetic field 9 T in the optimally doped $BaFe_{1.8}Co_{0.2}As_2$ single crystal with a superconducting temperature ($T_c$) of 24.6 K. The E-J Scaling behaviors below and above vortex glass transition temperature ($T_g$) were found, confirming the existence of the vortex glass phase transition. The critical exponents for the diverging spatial and time correlations at $T_g$, were obtained as v = $1.1{\pm}0.1$ and z = $4.5{\pm}0.3$, respectively. The obtained critical exponents are in good agreement with the predicted values of v ~ 1 - 2 and z > 4 within the 3D vortex glass theory.

Glass Transition Temperature of Poly(methyl methacrylate) Obtained with Ferrocene-Based Diimine Pd(II) Catalyst (Ferrocene-Based Diimine Pd(II) 촉매로 얻은 폴리(메틸메타크릴레이트)의 유리전이온도)

  • 박태학;이동호;김태정;박동규
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.410-414
    • /
    • 2002
  • The late transition Pd catalyst of low oxophilicity that has ferrocene -based diimine ligand for stabilization of center metal had been synthesized and applied for the polymerization of methyl methacrylate (MMA). In the presence of triisobutylaluminium (TIBA) for impurity scavenger, the effects of polymerization temperature and [TIBA]/[Pd] mole ratio on the yield and glass transition temperature ($T_g$) of PMMA had been examined. For 40~$50^{\circ}C$ of polymerization temperature and 2000~3000 of [TIBA]/[Pd] mole ratio, higher polymer yields were obtained. It was observed that ($T_g$) of PMMA is almost independent to the polymerization temperature but influenced by the [TIBA]/[Pd] mole ratio. With the examination of($T_g$) of PMMA with the structure of polymer, it had been found that T$_{g}$ of PMMA exhibits a linear relationship with the isotacticity of polymer.r.

Glass Transition Temperature of Honey Using Modulated Differential Scanning Calorimetry (MDSC): Effect of Moisture Content

  • Kim, Mi-Jung;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.356-359
    • /
    • 2010
  • Glass transition phenomena in nine Korean pure honeys (moisture content 18.3~20.1%) and honey-water mixtures by different water contents (0, 2, 5, and 10% w/w) were investigated with modulated different scanning calorimetry (MDSC). The total, reversing, and non-reversing heat flows were quantified during heating using MDSC. Glass transition was observed from reversing heat flow separated from the total heat flow. The glass transition temperatures ($T_g$) of pure honeys, which are in the range of $-42.7^{\circ}C$ to $-50.0^{\circ}C$, varied a lot with low determination coefficient ($R^2$=0.63), whereas those of honey-water mixtures decreased with a decrease in honey content. The $T_g$ values were also more significantly different among honey-water mixtures when compared to pure honeys, indicating that in the honey-water mixture system the $T_g$ values appear to be greatly dependent on moisture content. The measured heat capacity change (${\Delta}C_p$) was not influenced by moisture content.

A Study on the Thermal Properties of Epoxy/Micro-Nano Alumina Composites, as Mixture of Surface Modified Nano Alumina (표면개질된 나노알루미나를 혼합한, 에폭시/마이크로-나노알루미나 콤포지트의 열적특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1504-1510
    • /
    • 2016
  • The aim of this study is to improve properties both glass transition temperature($T_g$) and coefficient of thermal expansion(CTE) using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,2,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40, 50, 60wt%)+surface modified nano alumina(1_phr) composites. 20 kinds specimen were prepared with containing micro, nano alumina and GDE as a micro composites(10, 20, 30, 40, 50, 60, 70wt%) or a nano/micro alumina composites(1phr/40, 50, 60wt%). Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The glass transition temperature and coefficients of thermal expansion was evaluated by DSC and TMA. The glass transition temperature decreased and coefficients of thermal expansion become smaller with filled contents of epoxy/micro alumina composites. On the other hand, $T_g$ and CTE as GDE addition variation(1,2,3,5g) of epoxy/micro-nano alumina composites decreased and increased respectively.

Thickness Dependence of the Glass Transition Temperature in Thin Polymer Films

  • Lee, Jeong-Kyu;Zin, Wang-Cheol
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.201-201
    • /
    • 2006
  • In this study the glass transition temperature in thin polymer films has been studied. Ellipsometry has been used to measure $T_{g}$ of thin film as a function of film thickness. Empirical equation has been proposed to fit the measured $T_{g}$ pattern with thickness. Also, a continuous multilayer model was proposed and derived to describe the effect of surface on the observed $T_{g}$ reduction in thin films, and the depth-dependent $T_{g}$ profile was obtained. These results showed that $T_{g}$ at the top surface was much lower than the bulk $T_{g}$ and gradually approached the bulk $T_{g}$ with increasing distance from the edge of the film. The model and equation were modified to apply for the polymer coated on the strongly favorable substrate and the freely standing film.

  • PDF

Effect of Sucrose and Gluten on Glass Transition, Gelatinization, and Retrogradation of Wheat Starch (밀전분의 유리전이와 호화 및 노화에 대한 sucrose와 글루텐의 영향)

  • Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.288-293
    • /
    • 2004
  • Differential scanning calorimetry (DSC) was used to study effects of sucrose and gluten on wheat starch glass transition, gelatinization, and retrogradation. Glass transition temperature ($T_{g}$) of wheat starch decreased as the ratio of sucrose or gluten to starch increased. Both peak temperature ($T_{G}$) and enthalpy values of gelatinization endotherm increased or decreased with increasing ratio of sucrose or gluten, respectively. Wheat starch gel with no sucrose and gluten recrystallized up to 4 weeks of storage at $4^{\circ}C$, whereas those with sucrose and gluten completed recrystallization within 1 week. Both wheat starch gels with no sucrose and gluten, and those with sucrose and gluten at storage temperature of $32^{\circ}C$ recrystallized up to 4 weeks, with wheat starch-sucrose-gluten (1 : 0.5 : 0.12) system, which had highest ratios of gluten and sucrose to starch, showing lowest recrystallization. Nucleation and propagation rates of starch gel recrystallization based on polymer crystallization principles can be converted into peak width (${\delta}T$) and peak temperature ($T_{R}$) of retrogradative endotherm by DSC, because higher nucleation rate at storage temperature of $4^{\circ}C$ close to $T_{g}$ showed higher ${\delta}T$, whereas higher propagation rate at $32^{\circ}C$ (close to $T_{G}$) had higher $T_{R}$.

Influences of the Input on ANN and QSPR of Homopolymers

  • Sun, Hong;Tang, Yingwu;Wu, Guoshi
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2002
  • An artificial neural network (ANN) was used to study the relationship between the glass transition temperature (T$_{g}$) and the structure of homopolymers. The input is very important for the ANN. In this paper, six kinds of input vectors were designed for the ANN. Of the six approaches, the best one gave the is T$_{g}$ of 251 polymers with a standard deviation of 8 K and a maximum error of 29 K. The trained ANN also predicted the T$_{g}$ of 20 polymers which are not included in the 251 polymers with a standard deviation of 7 K and a maximum error of 21 K. 21 K.

Evaluation of Glass-forming Ability in Ca-based Bulk Metallic Glass Systems (칼슘기 벌크 비정질 합금에서 비정질 형성능 평가)

  • Park, Eun-Soo;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.181-186
    • /
    • 2009
  • The interrelationship between new parameter ${\sigma}$ and maximum diameter $D_{max}$ is elaborated and discussed in comparison with four other glass forming ability (GFA) parameters, i.e. (1) super-cooled liquid region ${\Delta}T_x (=T_x - T_g)$, (2) reduced glass transition temperature $T_{rg} (=T_g/T_l)$, (3) K parameter $K (=[T_x-T_g]/[T_l -T_x])$, and (4) gamma parameter ${\gamma}(=[T_x]/[T_l+T_g])$ in Ca-based bulk metallic glass (BMG) systems. The ${\sigma}$ parameter, defined as ${\Delta}T^*{\times}P^'$, has a far better correlation with $D_{max}$ than the GFA parameters suggested so far, clearly indicating that the liquid phase stability and atomic size mismatch dominantly affect the GFA of Ca-based BMGs. Thus, it can be understood that the GFA of BMGs can be properly described by considering structural aspects for glass formation as well as thermodynamic and kinetic aspects for glass formation.