• Title/Summary/Keyword: glass properties

Search Result 3,498, Processing Time 0.032 seconds

Mechanical Properties of Natural Rubber/Acrylonitrile-Butadiene Rubber Blends and Their Adhesion Behavior with Steel Cords (Natural Rubber/Acrylonitrile-Butadiene Rubber 블렌드의 기계적 물성과 강선과의 접착거동)

  • Sohn, Bong-Young;Nah, Chong-Woon
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • Mechanical properties and their adhesion behavior with zinc- and brass-plated steel cords of natural rubber/acrylonitrile-butadiene blend compounds were investigated as a function of blend ratio. The Mooney viscosity and stress relaxation time were found to be lowered with increasing NBR content. Tensile modulus generally increased with increasing NBR content. Tensile stress at break stayed constant up to about 40 phr and showed minimum at $50{\sim}60 phr$, and thereafter increased with increasing NBR content. Strain at break decreased linearly below 50 phr, and above the level it showed nearly constant value. Based on the abrupt drops in elastic modulus and tan ${\delta}$ peak, the glass transition temperature of NR and NBR were found to be -55 and $-10^{\circ}C$, respectively. In the case of NR/NBR blend compounds, two distinct transition points were observed and each transition position was not affected by NBR level indicating an incompatible nature of NR/NBR blend system. The pullout force and rubber coverage decreased to the level of about 40% to that of pure m compound, when the 50 phr of NR was replaced by NBR. However, the pure NBR compound showed the comparable adhesion performance with NR(${\sim}90%$). The sulfur concentration was found to become lower with the increased NBR content at the adhesion interface based on the Auger spectrometer results, representing a lack of adhesion layer formation, and this was explained for a possible cause of low adhesion performance with adding NBR.

  • PDF

Synthesis and Optical Properties of Acrylic Copolymers Containing AlQ3 Pendant Group for Organic Light Emitting Diodes

  • Kim, Eun-Young;Myung, Sung-Hyun;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.366-372
    • /
    • 2012
  • Three acrylic copolymers containing tris(8-hydroxyquinoline) aluminum (AlQ3) pendant group (25 wt%), acrylateco-HEMA-$AlQ_3$ (25 wt%), were successfully synthesized by free radical polymerization from acrylates [methyl methacrylate (MMA), acrylonitrile (AN) or 2-hydroxyethyl methacrylate (HEMA)] with HEMA functionalized with AlQ3 pendant groups (HEMA-p-$AlQ_3$). The glass transition temperatures ($T_g$) of MMA-co-HEMA-p-$AlQ_3$ (copolymer 1), AN-co-HEMA-p-$AlQ_3$ (copolymer 2) and HEMA-co-HEMA-p-$AlQ_3$ (copolymer 3) were found to be 158, 150 and $126^{\circ}C$, respectively. They have good thermal stability: a very desirable feature for the stability of OLEDs. Their solubility, thermal properties, UV-visible absorption and photoluminescence behaviors were investigated. They were found to be soluble in various organic solvents such as tetrahydrofuran (THF), dimethylformamide (DMF), toluene and chloroform. It was also found that the UV-visible absorption and photoluminescence behaviors of these copolymers were similar to those of pristine $AlQ_3$. Green organic light-emitting diodes (OLEDs) have also been fabricated using these copolymers as light emission/electron transport components obtained easily by spin coating, and their current density voltage (J-V) curves were compared. The OLED device of the copolymer 3 had the lowest turn-on voltage of about 2 V compared to other copolymer types devices.

Thermal and Optical Properties of Cellobiose Octa(cholesteryloxycarbonyl)alkanoates (셀로비오스 옥타(콜레스테릴옥시카보닐)알카노에이트의 열 및 광학 특성)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.230-238
    • /
    • 2008
  • The thermal and optical properties of cellobiose octa(cholestryloxycarbonyl)alkanoates CCCBn, $n=2{\sim}8$,10, the number of methylene units in the spacer) were investigated. All the samples formed monotropic cholesteric phases with left-handed helical structures. CCBn with n=2 or 10, in contrast with CCBn with $3{\leq}n{\leq}8$, did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cholesteryl group highly depends on the length of the spacer connecting the cholesteryl group to the cellobiose chain. The isotropic-cholestropic transition ($T_{ic}$) and glass transition temperatures decreased with increasing n and showed no odd-even effect. The transition entropy at $T_{ic}$ increased with increasing n from 2 up 6, but at n=7 it drops significantly and then increased again with increasing n from 8 to 10. The sharp change at n=7 may be attributed to a difference in arrangement of the side groups. The thermal stability and degree of order in the mesophase and the temperature dependence of the optical pitch observed for CCBn were significantly different from those reported for the cellulose tri(cholesteryloxycarbonyl)alkanoates and glucose penta(cholesteryloxycarbonyl)alkanoates. The results were discussed in terms of the differences in the degree of polymerization, the number of the mesogenic units per mole-glucose unit, and the conformation of the molecules.

Influence of Oxygen Flow Ratio on the Properties of In2O3 Thin Films Grown by RF Reactive Magnetron Sputtering (라디오파 반응성 마그네트론 스퍼터링으로 증착된 In2O3 박막의 특성에 산소 유량비의 변화가 미치는 효과)

  • Kwak, Jun-Ho;Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.224-229
    • /
    • 2010
  • Indium oxide $(In_2O_3)$ thin films have been prepared on glass substrate by using radio-frequency reactive magnetron sputtering with changing the oxygen flow ratio. The substrate temperature was kept at a fixed value of $400^{\circ}C$, and the sputtering gas and reactive gas were supplied with argon and oxygen, respectively. The oxygen partial flow ratio was varied by controlling the amount of oxygen with respect to the total mixed gases, 10%, 20%, 30%, 40%, and 50%. The optical, electrical, and structural properties of the deposited thin films were investigated by using ultraviolet-visible-near infrared spectrophotometer, Hall measurement, and X-ray diffractometer and scanning electron microscopy. The $In_2O_3$ thin film deposited at 20% of oxygen flow ratio showed an average transmittance of 86% in the wavelength range of 430~1,100 nm, an electrical resistivity of $1.1{\times}10^{-1}{\Omega}cm$. The results show that the transparent conducting films with optimum conditions can be achieved by controlling the oxygen flow ratio.

Properties of ZnS:Cu,Cl Thick Film Electroluminescent Devices by Screen Printing Method (스크린인쇄법에 의한 ZnS:Cu,Cl 후막 전계발광소자의 특성)

  • No, Jun-Seo;Yu, Su-Ho;Jang, Ho-Jeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.448-452
    • /
    • 2001
  • The ZnS:Cu,Cl thick film electroluminescent devices with the stacking type(separated with phosphors and insulator layers) and the composite type (mixed with phosphor and insulator materials) emission layers were fabricated on ITO/glass substrates by the screen printing methods. The opical and electrical properties were investigated as fundations of applied voltages and frequencies. In the stacking type, the luminance was about 58 cd/$\m^2$ at the applied voltage of 400Hz, 200V and increased to 420 cd/$\m^2$ with increasing the frequency to 30Hz. For the composite type devices, the threshold voltage was 45V and the maximum luminance was 670 cd/$\m^2$ at the driving condition of 200V, 30Hz. The value of luminance of the composite type device showed 1.5 times higher than that of stacking type device. The main emission peak was 512 nm of bluish-green color at 1Hz frequency below and shifted to 452 nm in the driving frequency over 5Hz showing the blue omission color. There were no distinct differences of the main emission peaks and color coordinate for both samples.

  • PDF

Studies on Thermal and Dynamic Viscoelastic Behaviors of Multiwalled Carbon Nanotubes-reinforced Epoxy Matrix Composites (다중벽 탄소나노튜브강화 에폭시 매트릭스 복합재료의 열적 및 동적 점탄성 거동 연구)

  • Seo, Min-Kang;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.401-406
    • /
    • 2005
  • In this work, the effect of chemical treatment of multiwalled carbon nanotubes (MWNTs) on glass transition temperature (Tg), thermal stability, and dynamic viscoelastic behaviors of MWNTs-reinforced epoxy matrix composites has been studied by differencial scanning calorimeter (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) measurements. The MWNTs were chemically treated with 35 wt% $H_3PO_4$ (A-MWNTs) or 35 wt% KOH (B-MWNTs) solutions and the changes of surface properties of chemically treated MWNTs were examined by pH, acid and base values, Fourier transfer-infrared spectroscopy (FT-IR), and x-ray photoelectron spectroscopy (XPS) analyses. The chemical treatments based on acid and base reactions led to a significant change of surface characteristics and chemical compositions of the MWNTs, especially A-MWNTs/epoxy composites had higher thermal stability and dynamic viscoelastic properties than those of B-MWNTs and non-treated MWNTs/epoxy composites. These results were probably due to the improvement of interfacial bonding strength, resulting from the acid-base interaction and hydrogen bonding between the epoxy resins and the MWNT fillers.

Effect of RF power on the Electrical, Optical, and Structural Properties of ITZO (In-Sn-Zn-O) Thin Films (RF 파워 변화에 따른 ITZO (In-Sn-Zn-O) 박막의 전기적, 광학적, 구조적 특성)

  • Seo, Jin-Woo;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.394-400
    • /
    • 2014
  • In this study, we fabricated ITZO thin films on glass substrates with various RF power from 30 to 60W and investigated the electrical, optical and structural properties. ITZO thin film deposited at 50W exhibited the largest figure of merit ($10.52{\times}10^{-3}{\Omega}^{-1}$) and then its resistivity and sheet resistance were $3.08{\times}10^{-4}{\Omega}-cm$ and $11.41{\Omega}/sq.$, respectively. As results of optical characterization, average transmittance of all ITZO thin films were over 80%. ITZO thin films had amorphous structure regardless of the RF power. The FESEM and AFM results showed that all ITZO thin films have a very smooth surface having no cracks and defects and the film deposited at 50W exhibit the smallest surface roughness of 0.254nm. We found that a amorphous ITZO thin film is a very promising material for replacing ITO in the next display device such as OLED.

The Wet and Dry Etching Process of Thin Film Transistor (박막트랜지스터의 습식 및 건식 식각 공정)

  • Park, Choon-Sik;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1393-1398
    • /
    • 2009
  • Conventionally, etching is first considered for microelectronics fabrication process and is specially important in process of a-Si:H thin film transistor for LCD. In this paper, we stabilize properties of device by development of wet and dry etching process. The a-Si:H TFTs of this paper is inverted staggered type. The gate electrode is lower part. The gate electrode is formed by patterning with length of 8 ${\mu}$m${\sim}$16 ${\mu}$m and width of 80${\sim}$200 ${\mu}$m after depositing with gate electrode (Cr) 1500 ${\AA}$under coming 7059 glass substrate. We have fabricated a-SiN:H, conductor, etch-stopper and photo resistor on gate electrode in sequence, respectively. The thickness of these thin films is formed with a-SiN:H (2000 ${\mu}$m), a-Si:H(2000 ${\mu}$m) and n+a-Si:H (500 ${\mu}$m), We have deposited n-a-Si:H, NPR(Negative Photo Resister) layer after forming pattern of Cr gate electrode by etch-stopper pattern. The NPR layer by inverting pattern of upper gate electrode is patterned and the n+a-Si:H layer is etched by the NPR pattern. The NPR layer is removed. After Cr layer is deposited and patterned, the source-drain electrode is formed. In the fabricated TFT, the most frequent problems are over and under etching in etching process. We were able to improve properties of device by strict criterion on wet, dry etching and cleaning process.

Effect of Substrate Temperature and O2 Introduction With ITO Deposition by Electron Beam Evaporation on Polycyclic Olefin Polymer (전자빔으로 폴리사이클릭 올레핀 기판에 ITO 증착시 기판온도 및 산소 도입의 영향)

  • Ahn, Hee-Jun;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.742-748
    • /
    • 2005
  • Transparent conductive indium-tin oxide (ITO) films are widely used as transparent electrodes for flat panel displays. Many of the ITO films for practical use have been prepared by magnetron sputtering, chemical vapor deposition, electron beam evaporation, etc. An oxide target composed of 10 wt% $SnO_2$ and 90 wt% $In_2O_3$ has been deposited onto polycyclic olefin polymer (POP) substrate by electron beam evaporation. POP has a higher glass transition temperature ($Tg=330^{\circ}C$) than other conventional polymers. In this study, the effects of substrate temperature and the $O_2$ introduction flow rate were investigated in terms of physical, electrical and optical properties of deposited ITO films. We investigated the effects of processing variables such as substrate temperature and the oxygen introduction flow rate. The best electrical and optical properties of deposited ITO films obtained from this study were electrical resistivity value of ${\rho}=1.78{\times}10^{-3}{\Omega}{\cdot}cm$ and optical transmittance of about 85% at 8 sccm (Standard Cubic Centimeter per Minute) $O_2$ introduction flow rate, $5{\AA}/sec$ deposition rate, $1000{\AA}$ deposited ITO thickness and $200^{\circ}C$ substrate temperature.

A Study on Physicochemical Properties of Epoxy Coatings for Liner Plate in Nuclear Power Plant (원자력발전소 격납건물 철재면 에폭시 도장시편의 물리화학적 특성 평가)

  • Lee, Jae-Rock;Seo, Min-Kang;Lee, Sang-Kook;Lee, Chul-Woo;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.809-814
    • /
    • 2005
  • In this work, the thermal properties of epoxy coating system on the liner plate in the containment structure of nuclear power plants had been examined by irradiation and design basis accident (DBA) conditions. The effect of immersion in hot water on adhesion strength of the coating system had been also studied. The glass transition temperature ($T_g$) and thermal stability of ET-5290/carbon steel A 32 epoxy coating systems were measured by DSC and TGA analyses, respectively. Contact angle measurements were used to determine the effect of immersion on the surface energetics of epoxy coating system, with a viewpoint of surface free energy. Adhesion tests were also executed to evaluate the adhesion strength at interfaces between carbon steel plate and epoxy resins. As a result, it was found that the irradiation led to an improvement of internal crosslinked structure in cured epoxy systems, resulting in significantly increasing the thermal stability, as well as the $T_g$. Also, the immersion in hot water made a role in the post-curing of epoxy resins and increased the mechanical interlocking of the network system, resulting in increasing the adhesion strength of the epoxy coating system.