• Title/Summary/Keyword: glass pipe

Search Result 104, Processing Time 0.028 seconds

A Study on Behavior of Novel Non-Metallic Anchoring System for FRP Tendons (FRP 긴장재의 비금속 정착 시스템의 거동에 관한 연구)

  • 서관세;조병완;이계삼;김영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.983-988
    • /
    • 2000
  • Anchoring systems with structural stability and endurance have been one of the most important elements for PSC structures, especially for the structures using non-corrosive FRP tendons. FRP tendons are in increasing use for underground and coastal structures constantly contacted with fresh water or sea water because of their superiority to metallic ones in corrosion-resistance. In this study new non-metallic anchoring system for FRP tendons has been tested and investigated. The newly developed anchoring system utilizes FRP pipes and HEM (Highly Expansive Mortar). The major factors considered in this experiment were expansive pressure of HEM during its hydration and the strength of GFRP(Glass Fiber Reinforced Plastic) Pipe. Anchoring forces of the new anchoring system were investigated from the pull-out testes. The authors analyzed pull-out procedures of the FRP tendons in the various pipe filled with HEM and suggested an improved idea to develop novel non-metallic anchoring system for FRP tendons

Evaluation of Ground-Water Sampling Techniques for Analysis of Chlorofluorocarbons (지하수의 CFCs(Chlorofluorocarbons) 조사를 위한 시료 채취 방법의 평가)

  • 고동찬;이대하
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • Two types of ground-water sampling techniques for CFCs (chlorofluorocarbons) analysis, the cold-welded copper tube method and flame-sealed borosilicate glass ampule method, were compared and evaluated. CFCs concentrations by the copper tube method showed a poor reproducibility among triplicates whereas those by the glass ampule method showed a good agreement and relative standard deviations of triplicates were less than 5%. The poor reproducibility of the copper tube method appears to be attributed to the incomplete sealing in connection between faucets of wellhead and the sampling apparatus. The copper tube method also showed higher CFCs concentrations than the glass ampule method, which is more pronounced for CFC-11 than for CFC-12. The plastic tubings and rubber gasket of faucets in case of the copper tube method possibly contaminated the samples with CFC-11 and CFC-12. The potential of CFCs contamination for the glass ampule method was eliminated by using stainless steel and Nylon only and by connecting the sampling equipment directly to the main discharge pipe of wellhead. The validity of the glass ampule method were also verified by detecting very low level of CFCs for the ground-water sample which is old enough to have negligible CFCs.

A Study on the Fracture Safety of Glass Fiber Reinforced Plastic Pipes (유리섬유 보강 플라스틱관의 파괴 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.121-126
    • /
    • 1994
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety as structural materials of GFRP(Glass Fiber Reinforced Plastics) which we wifely used in the developed countries becauses of their natural of anticorrosion and lightweight etc.. In the fracture test, the mid-span displacement, the strain and the yield load of the GFRP pipes are measured for different number of laminates, and fracture energy is estimated. From this study, it is known that GFRP pipe could be used as structural materials in underground buried pipes if their ductility and strength are increased by controlling number of laminates. Furthermore, because of their merit of lightweight, they can contribute greatly to reduction of construe-tlon cost when they are employed.

  • PDF

A Study on the Underdrainage of wet paddy fields by using P.V.C Pipe (P.V.C관을 이용한 저혼답의 이순작에 관한 연구)

  • 주재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.2
    • /
    • pp.3002-3006
    • /
    • 1973
  • The study on the drainage has been performed for long time in Korea. The 4th attempt of study on under-drainage by use P.V.C. suction pipe were made in 1971. Drainage method, soil temperature, growth of crop and yield were observed and compared with the 3 drained Plots and at the 3 undrained ones. Obtained results were as follows; 1. The soil temperatures in the drained plots were $1.8^{\circ}C$ higher than that in the undrained ones during the irrigation period. 2. 20% of increased yield were resulted from practicing of P.V.C. suction pipe drainage. 3. The annual net income per 1ha of paddy rice field with P.V.C. suction pipe drainge was 82,900 won.

  • PDF

A Study on the Frictional Characteristics of Fiber Reinforced Composites under Corrosive Environment (부식 환경 하에서의 섬유강화복합재료의 마찰 및 마모 특성 연구)

  • Choong-Yong Park;Dong-Hyun Park;Soo-Jeong Park;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.37-41
    • /
    • 2023
  • The treated water inside the ballast electrolytic cell creates a highly alkaline atmosphere due to hydroxide generated at the DSA(Dimension Stable Anode) electrode during electrolysis. In this study, a composite material that can replace the weakness of the PE-coated steel pipe used in the existing ballast pipe was prepared. The test samples are BRE(Basalt fiber reinforced epoxy), BRP(Basalt fiber reinforced unsaturated polyester), GRE(Glass fiber reinforced epoxy), and GRP(Glass fiber reinforced unsaturated polyester). And then it was immersed in NaOH for 720 hours. The friction test of each specimen was conducted. The Friction coefficient analysis according to material friction depth and interfacial adhesion behavior between resin and fiber were analyzed. As a result, the mechanism of interfacial separation between resin and fiber could be analyzed. In the case of the unsaturated polyester resin with low interfacial bonding strength the longer the immersion time in the alkaline solution, the faster the internal deterioration caused by the deterioration that started from the surface, resulting in a decrease in the friction coefficient. It is hoped that this study will help to understand the degradation behavior of composite materials immersed in various chemical solutions such as NaOH, acid, and sodium hypochlorite in the future.

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Study on Performance Comparison for Solar Collectors with Single Evacuated Tube using Surface Treatment and Commercial Double Evacuated Tube (표면처리를 이용한 단일진공관과 기존 이중진공관 태양열집열기의 성능비교 연구)

  • Chun, Tae-Kyu;Yang, Young-Joon;Lee, Kyung-Hee;Ahn, Young-Chull
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.149-156
    • /
    • 2013
  • The performances of solar collectors with single and double evacuated tube were experimentally compared. The solar collector with single evacuated tube using surface treatment in this study consists of radiation fin, heat pipe, absorber plate, glass tube, cap and regulating valve, and so on. Surface treatment was conducted for heat pipe and absorber plate with black chrome plating and copper black coating. As the results, the performance of solar collector with single evacuated tube using surface treatment showed good results compared that of double evacuated tube. Absorber plate played a positive role in performance and showed increase of about 28%. Further performance depends on vacuum degree and vacuum degree has to be considered economical efficiency in solar collector.

Development and Durability Evaluation of a Bimaterial Composite Frame by Pultrusion Process (인발성형 공정을 통한 이종재료 복합소재 프레임 개발 및 내구성 평가)

  • Lee, Haksung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • Recently, the growing demand for weight reduction and improved structure durabilityfor commercial vehicles has led to active research into the development and application of suitablecomposite materials. This studysuggests abimaterial composite frame produced by apultrusion process to replace steel frames. We focused on the development of a composite frameconsisting of two types of materialsby mixing anorthotropic material with anisotropic material. The inside layer consisted of an aluminum pipe, and the outside layer was composed of a glass fiber pipe. To determine the strength and failure mechanisms of the composite material, tensile tests, shear tests, and three-point bending tests were conducted, followed by fatigue tests. After static testing, the fatigue tests were conducted at a load frequency of 5 Hz, a stress ratio (R) of 0.1, and an endurance limit of $10^6$ for the S-N curve. The resultsshowed that the failure modes were related to both the core design and the laminating conditions.

Utilization of Heat from Waste-Incineration Facility for Heating Large-Scale Horticultural Facilities (소각시설 여열을 이용한 대규모 시설원예 단지의 난방 시스템 적용 가능성 평가)

  • Lee, Jaeho;Hyun, Intak;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.418-425
    • /
    • 2015
  • The Korean government plans to establish large-scale horticultural facilities using reclaimed land to improve the competitiveness of the national agricultural sector at the government level. One of the most significant corresponding problems is the ongoing dependence of these facilities on fossil fuel, whereby constant heating is necessary during the winter season to provide the necessary breeding conditions for greenhouse crops. In particular, high-level energy consumption is incurred from the use of heating-related coverings with large heat-transmission coefficients such as those composed of vinyl and glass. This study investigated the potential applicability of waste-incineration heat for use in large-scale horticultural facilities by evaluating the hot-water temperature, heat loss, and available greenhouse area as functions of the distance between the incineration facility and the greenhouse. In conclusion, waste-incineration heat from a HDPE pipe can heat a horticultural facility of 10 ha if the distance is less than 8 km.