• Title/Summary/Keyword: glass microlens array

Search Result 16, Processing Time 0.023 seconds

Simulation study on the optical structures for improving the outcoupling efficiency of organic light-emitting diodes

  • Jeong, Su Seong;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.139-143
    • /
    • 2012
  • In this study, optical simulation was used to compare three optical structures that could be applied to the typical organic light-emitting diode to increase the outcoupling efficiency. These were spherical scattering particles (treated as Mie scatterers) embedded in the glass substrate, microlenses formed on the glass substrate, and a diffusing layer (DL) with a Gaussian scattering distribution function inserted between the indium tin oxide (ITO) and the glass substrate. It was found that the application of microlens array and that of scattering particles in the glass substrate exhibited similar enhancements in the outcoupling efficiency when the density and the refractive index of the scattering particles were optimized. The DL located at the interface between the glass and the ITO further enhanced the efficiency because it could further extract the trapped light in the waveguide mode. The appropriate combination of these three structures increased the outcoupling efficiency to about 42%, which is much greater than the typical values of 15-20% when there is no optical structure for light extraction.

Fabrication of refractive PMMA microlens array using transparent acrylic resin (투명 아크릴 레진을 이용한 초소형 PMMA 렌즈 배열의 제작)

  • Ahn, Si-Hong;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3316-3318
    • /
    • 1999
  • PMMA(poly-methyl methacrylate) microlens array is fabricated using transparent acrylic resin. PMMA is commonly used material for plastic lens due to its excellent visibility larger than 90% and other optical characteristics so much close to those of glass. Orthodontic resin (DENTSPLY International Inc.), commonly used in dentistry, is an transparent acrylic resin kit including MMA liquid and polymerization powder. Their mixture results in PMMA through polymerization. Using the resin PMMA layer is formed on the substrate through spin-coating. Designed pattern of lens structure is transferred to PMMA layer by RIE (Reactive Ion Etching) with oxygen plasma. Final lens shape is formed by thermal treatment that causes PMMA to reflow, The thickness of PMMA spun on the substrate is $17{\mu}m$ that is also final sag of microlens, Designed diameters of the microlenses are $200{\mu}m$, $300{\mu}m$,and $500{\mu}m$, respectively.

  • PDF

Formation of Microlens Array via a Modified LIGA Process: Molding and Modeling (변형 LIGA 공정을 이용한 마이크로 렌즈 어레이 개발: 몰딩 및 모델링)

  • Kim, D. S.;Lee, H. S.;S. S. Yang;Lee, B.K.;Lee, S.K.;T. H. Kwon;Lee, S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.465-469
    • /
    • 2003
  • Microlens arrays were fabricated using a novel fabrication technology based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep X-rays and subsequent thermal treatment. X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. A new physical modeling and analyses for microlens formation were presented according to experimental procedure. A simple analysis based on the new model is found to be capable of predicting the shapes of microlens which depend on the thermal treatment. For the replication of microlens arrays having various diameters with different foci on the same surface, the hot embossing and the microinjection molding processes has been successfully utilized with a mold insert that is fabricated by Ni-electroplating based on a PMMA microstructure of microlenses. Fabricated microlenses showed good surface roughness with the order of 1 nm.

  • PDF

Fabrication and Modeling of Microlens Array by a Modified LIGA Process

  • Kim Dong Sung;Lee Hyun Sup;Yang Sang Sik;Lee Bong-Kee;Lee Sung-Keun;Kwon Tai Hun;Lee Seung S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.7-13
    • /
    • 2003
  • Microlens arrays were fabricated using a novel fabrication technology based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep X-rays and subsequent thermal treatment. X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. A new physical modeling and analyses for micro lens formation were presented according to experimental procedure. A simple analysis based on the new model is found to be capable of predicting the shapes of micro lens which depend on the thermal treatment. For the replication of micro lens arrays having various diameters with different foci on the same surface, the hot embossing and the microinjection molding processes has been successfully utilized with a mold insert that is fabricated by Ni-electroplating based on a PMMA microstructure of micro lenses. Fabricated microlenses showed good surface roughness with the order of 1nm.

  • PDF

Fabrication of Anti-Moiré Filter Using Multi-Array Needle Coating for LED Screens (다중 배열 니들 코팅을 이용한 LED 스크린용 Anti-Moiré 필터 제작)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.77-82
    • /
    • 2021
  • Using a multi-array needle module developed for coating of high-density cylindrical microlens array (C-MLA), we have fabricated an anti-Moiré filter for LED screens. The Moiré phenomenon appears due to the interference between the array pattern of image sensors in a camera and the non-emission area (grid pattern) of a LED screen. To suppress it, we have employed poly(methyl methacrylate) (PMMA) and coated it on a glass substrate in the form of a grid and non-grid (parallel lines). We have rotated the needle module in order to increase the number of C-MLAs. With this scheme, we have fabricated the 150 mm × 150 mm anti-Moiré filters where 836 microlens lines are formed. They show the average width of 255.4 ㎛, the average distance between CMLs of 94.6 ㎛, and C-MLA width non-uniformity of 4.7%. We have shown that the Moiré patterns still appear in the presence of the parallel (non-grid)-type filter, whereas they disappeared completely by the grid-type filter. It is due to the fact that the Moiré patterns are diffused more effectively by the grid-type C-MLA.

Enhancement of Light Extraction from Transparent OLED Lighting Panels (투명 OLED 면광원 광 추출 향상 기술)

  • Park, June Buem;Shin, Dong-Kyun;Han, Seun Gjo;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.41-45
    • /
    • 2017
  • We have investigated the light extraction efficiency of large-area OLED lighting panels with a microlens array (MLA) or external scattering layer (ESL) by ray tracing simulation. The application of MLA and ESL to transparent OLEDs (TOLEDs) with an auxiliary metal electrode is also studied. It is found that MLA shows higher light extraction efficiency, compared with ESL. However, we have demonstrated that ESL is more suitable for TOLEDs having dual-sided equal light emission. Namely, equal light emission from the front and rear surfaces of TOLED can be achieved by increasing the scattering particle density of ESL. To compensate for a loss in light emission induced by auxiliary metal electrode, we come out with an OLED structure partially covered with MLA at the outer surface of glass substrate, which is aligned with metal electrode. With this scheme, it is observed that the light extraction efficiency can be boosted more than 20% from opaque OLED and 50% from transparent OLED.

  • PDF