• Title/Summary/Keyword: glass cutting

Search Result 153, Processing Time 0.026 seconds

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S.;Khashaba, Usama A.;Ahmed, Khaled I.;Eltaher, Mohamed A.;Najjar, Ismael;Melaibari, Ammar;Abdraboh, Azza M.
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.503-522
    • /
    • 2021
  • This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.

Air Fluid Analysis between Porous PE-Plate and Glass in Air-Floating FPD Conveyor System (공기부상 FPD 이송장치에서 다공질판과 글래스 사이의 공기유동 해석)

  • Lho, Tae-Jung;Shon, Tae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.878-885
    • /
    • 2008
  • The FPDs(Flat Panel Displays) such as LCD(Liquid Crystal Display) and PDP(Plasma Display Panel) and OLED(Organic Light Emitting Diode), recently, have been substituted for CRT(Cathode Ray Tube) displays because they have a convex surface, small volume, light weight and lower electric power consumption. The productivity of FPDs is greatly dependent on the area of thin glass panel with 0.6 - 0.8mm thickness because FPDs are manufactured by cutting a large-scaled thin glass panel with patterns to the required product dimensions. So FPD's industries are trying to increase the area of thin glass panel. For example, the thin glass panel size of the 8th generation is 2,200mm in width, 2,600mm in length and 0.7mm in thickness. The air flows both in the thin glass panel and in the porous PE-plate surface were modeled and analyzed, from which a working condition was estimated. The thin glass panel on the porous PE-plate surface with self-lubricating characteristics was investigated and compared with that on the square duct floating bar surface with many holes of 1mm diameter when the thin glass panel contacts the floating bar surface due to malfunction of electric power supply.

A Study on the Tile Mural Decoration Design Using Colored Glass Plaster Technique (색유리 플래스터 기법을 이용한 타일 벽장식 방안 연구)

  • Kim, Seung-Man
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.460-470
    • /
    • 2020
  • In modern life, interior decoration has been transformed into a psychological synergistic effect of space, greatly affecting human sensibility. The main point of view in this paper is to study the discovery of new decorative effects and the possibility of products that can replace imported tiles, which account for more than 60% of the walls of indoor spaces closely related to daily life. The solution is to create point tiles using color glass plaster techniques developed in 2018 and to explore the possibility of decorating art walls to meet consumers' purchasing needs using simulations. The four patterns applied to the a paintbrush, resist printing, cutting technique, and inlaid patterns, and the traditional color development effect of the medium color suited to our sensibilities was studied. In addition, through simulation, art walls and acrylic using color glass styles were also used in the kitchen, living room and empty space of the bathroom. Based on this research, ceramic point tiles with a new perspective will be explored and the interior using walls will be activated.

Machinability and Strength of AlN-BN Ceramics (AlN-BN계 세라믹스의 기계가공성과 강도)

  • 감직상;하정수;정덕수;한경섭
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.177-184
    • /
    • 1994
  • AlN-BN ceramics with BN contents in the range of 10 to 40 wt% were prepared by hot pressing using no additive, or 3 wt%, Y2O3 or CaO, which are common densification aids for AlN. And their machinability, bend strength, and microstructures were investigated. Both the main and radial cutting forces decreased with increasing BN content in all three kinds of samples. For the BN contents of 30 wt% or above, the cutting forces were lower than that of a mild steel tested at a same condition. Especially in the case of main forces, the values were less than a quarter of that of a mild steel, indicating excellent machinability. Bend strength (when the tensile surfaces of specimens were perpendicular to the hot pressing direction) also decreased with BN content mainly due to the much lower Young's modulus of BN compared to AlN. With the composition of 30 wt% BN at which the AlN-BN ceramics started to show better machinability than a mild steel, the bend strength was 150 to 160 MPa, which is greater than that of machinable glass-ceramics of a mica system. With tensile surfaces parallel to the hot pressing direction, however, the bend strength obtained for the samples processed with the sintering acids showed low values (about 40 MPa), since most BN particles had such orientation that their cleavage planes (i.e., basal planes) were perpendicular to the pressing direction.

  • PDF

An Evaluation of Flame and Fire Retardant Performance for Welding Blanket (용접 불티 차단막의 방염 및 난연성능 평가)

  • 이근원;권오승;하동명
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.53-58
    • /
    • 2001
  • This study was undertaken to evaluate the performance of flame retardant for fire precaution from sparks at welding-cutting process in industry sites such as shipbuilding yard and chemical factory. As the results of the performance experiment, six kinds of welding blanket in samples that are used commercially had enough in the performance of flame retardant. Nevertheless, the performance to fire precaution un welding blanket shows that the coaling product of two kinds with fiber glass is not sufficient. The lower oxygen index to welding blanket is considered that it is more than 30 in domestic standard. We suggested that the performance improvement of flame retardant for welding blanket need continuously, and the guideline of the flame retardant to welding blanket should be considered and established.

  • PDF

Optimization of the Sintering Time and Composition for SiC-$Si_3 N_4$ Ceramic Tool (SiC-$Si_3 N_4$ 세라믹공구를 위한 소결시간과 조성변화의 최적화)

  • 김경재;박준석;이성구;권원태;김영욱
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.78-84
    • /
    • 2001
  • In the present study, SiCSi-$Si_3 N_4$-SiC ceramic composites that contained up to 30 wt% of dispersed SiC particles were fabricat-ed cia hot-pressing with an oxynitride glass. The microstructure, the mechanical properties and the cutting performance of resulting ceramic composites were investigated. By fixing the composition as $Si_3 N_4$-20wf%SiC, the effect of sintering time on the microstructure, the mechanical properties and the cutting performance were also investigated. The longer sir-tering time is, the bigger the grain size of SiC is. The fracture toughness(-$K_k$) of the $Si_3 N_4$-SiC ceramic composites increased with the increase of gain size, while the flexural strengthh($\sigma$) decreased. For machining SCM440, the insert with 20wt%r SiC sintered for 8 hours showed the longest tool life while the insert with 20wt% SiC sintered for 12 hours showed the longest tool life for machining gray cast iron.

  • PDF

EFFECT OF CALCIUM HYDROXIDE AND GLASS IONOMER CEMENT ON LEUKOTRIENE B4 AND C4 LEVELS IN EXPERIMENTALLY INFLAMED RAT DENTAL PULP (수산화칼슐과 글라스아이오노머 시맨트가 치수내 leukotriene B4와 C4의 농도에 미치는 영향에 관한 연구)

  • Park, Gye-Yang;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.451-469
    • /
    • 1996
  • The purpose of this study was to investigate the effect of calcium hydroxide and glass ionomer cement fillings on the levels of $LTB_4$ and $LTC_4$ in experimentally inflamed rat dental pulp. The dental pulp in the mandibular incisor of wistar rat was irritated by cutting a 5mm deep hole in the dentin with a twist drill bur of 0.5mm diameter, without cooling. The cavities were filled with calcium hydroxide(light-cured) and glass ionomer cement(light cured). The untreated pulp served as control tissue specimen. After cavity preparations, the rat with or without various treatment were sacrificed in various time by decapitation. The dental pulp tissue were carefully removed and the concentrations of $LTB_4$ and $LTC_4$ were determined by radioimmunoassay. And pulps were examined histologically to observe inflammatory feature. The result were obtained as follows : 1. The inflammatory features of pulps were observed microscopically in all experimental groups. And degree of inflammation was decreased with time. 2. The concentrations of $LTB_4$ and $LTC_4$ for all experimental groups were significantly higher than those for control group 6 hours after cavity preparation(p<0.05). 3. The group filled with calcium hydroxide was the lowest, and the group filled with glass ionomer cement, the group of irritation in that order showed increased concentrations of $LTB_4$ and $LTC_4$ 6 hours after cavity preparation. In the concentrations of $LTB_4$, significant differences among 3 groups were noted(p<0.05). 4. The group filled with calcium hydroxide was the lowest, and the group filled with glass ionomer cement, the group of irritation in that order showed increased concentrations of $LTB_4$ and $LTC_4$ 24 hours after cavity preparation. And there were statistically significant difference in concentrations of $LTB_4$ between the group of irritation and the group filled with calcium hydroxide(p<0.05). 5. The group filled with calcium hydroxide was the lowest, and the group filled with glass ionomer cement, the group of irritation in that order showed increased concentrations of $LTB_4$ and $LTC_4$ 48 hours after cavity preparation. But no statistically difference was found (p>0.05). 6. The concentrations of $LTB_4$ and $LTC_4$ in all experimental groups were highest level at 6 hour after experiment and decreased as time progresses(correlation coefficient>0.8).

  • PDF

Fibre composite railway sleeper design by using FE approach and optimization techniques

  • Awad, Ziad K.;Yusaf, Talal
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.231-242
    • /
    • 2012
  • This research work aims to develop an optimal design using Finite Element (FE) and Genetic Algorithm (GA) methods to replace the traditional concrete and timber material by a Synthetic Polyurethane fibre glass composite material in railway sleepers. The conventional timber railway sleeper technology is associated with several technical problems related to its durability and ability to resist cutting and abrading action of the bearing plate. The use of pre-stress concrete sleeper in railway industry has many disadvantages related to the concrete material behaviour to resist dynamic stress that may lead to a significant mechanical damage with feasible fissures and cracks. Scientific researchers have recently developed a new composite material such as Glass Fibre Reinforced Polyurethane (GFRP) foam to replace the conventional one. The mechanical properties of these materials are reliable enough to help solving structural problems such as durability, light weight, long life span (50-60 years), less water absorption, provide electric insulation, excellent resistance of fatigue and ability to recycle. This paper suggests appropriate sleeper design to reduce the volume of the material. The design optimization shows that the sleeper length is more sensitive to the loading type than the other parameters.

The Polishing Characteristics and Development of Ultrasonic Polishing System (초음파 폴리싱 시스템의 개발 및 특성)

  • Moon, H.H.;Park, B.G.;Kim, S.C.;Lee, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1014-1020
    • /
    • 2003
  • We have developed the ultrasonic polishing system to get super finishing that consist of machine part that can rotate and travel the main shaft with power 1.5kW, ultrasonic generator with frequency 20kHz. By using this system we were investigated the characteristics of ultrasonic polishing and deduced the major facters which affect the surface roughness by the experimental plans for three different materials such as ceramic, glass, and wafer, and so could be obtained following results. We could be obtained the excellent surface for hard-to-difficult cutting materials. The rotating speed could be found to be major factor influencing the surface roughness. In the case of ceramic and wafer, we were able to obtain good surface roughness when the feed rate and ultrasonic output is higher. In the case of glass, the surface roughness becames worse when ultrasonic output is higher because of increasing of load affacting on the particles in slurry.

  • PDF

Study on an Enhanced Manufacturing Process for Mobile Camera Window Glass (Mobile용 Camera Window의 공정 개선에 관한 연구)

  • Ahn, Hae Won;Shin, Ki Hoon;Oh, Jae Ho;Kim, Hak Chul;Kwon, Soo Kun;Choi, Seong Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.15-21
    • /
    • 2015
  • The glass used for Mobile Camera Window is required to have high strength. Cell type manufacturing by means of CNC is widely used for camera window. Individual loading and unloading is needed for each process, such as painting and PVD, in cell type manufacturing. The purpose of this study is to search the enhanced manufacturing process with sheet type throughout bulk unit production in painting and PVD. This study includes sheet type manufacturing processes such as laser cutting, wet etching, 2nd tempering, printing, and AF/AR coating.