• Title/Summary/Keyword: glass crack

Search Result 304, Processing Time 0.024 seconds

레이저를 이용한 LCD 유리 절단 기술

  • Jeong, Jae-Yong;O, Dae-Hyeon;Yu, Gi-Ryong;Lee, Cheon;Lee, U-Yeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.219-223
    • /
    • 2005
  • Nowadays laser cutting is the most promising method of cutting FPD(Flat Panel Display) glass in mass-production line. And this method can also be used to cut other brittle materials such as quartz, sapphire, ceramic and semiconductor The concept of this method is shown in picture 1. Laser beam heats glass up to strain point, not to melting point and cooling system chills glass to induce maximun thermal stress in glass surface and then the thermal stress generates micro thermal crack, in other words blind depth of crack, along laser beam and cooling line.

  • PDF

A Study on the Development of Concrete showing Self-damage (자기 손상을 나타내는 콘크리트의 개발 연구)

  • 박신일;박준영;전철송;임병호;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.129-133
    • /
    • 2000
  • The purpose of this paper is to develope concrete which presents self-damage as soon as the crack by external force occur. In experiment, when concrete specimens inserted glass filled with mixed liquid into were loaded, glass tube was break and crack around became red color. Failure properties were investigated according to type, location of sensor and existence of reinforced bar.

  • PDF

MIXED-MODE CRACK PROPAGATION BY MOVABLE CELLULAR AUTOMATA METHOD

  • Pak, Mik-Hail;Lee, Choon-Yeol;Chai, Young-Suck
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1754-1759
    • /
    • 2007
  • Propagation of a mixed-mode crack in Soda-Lime silica glass using Movable Cellular Automata (MCA) method is demonstrated in this study. In MCA method, special fracture criterion is used to describe the process of crack initiation and propagation. Comparison between MCA and other crack initiation criteria results are made. The crack resistance curves and bifurcation angles under different loading angles are found. In comparisons with results of maximum circumferential tensile stress criterion, MCA result showed the sufficient agreement.

  • PDF

Reducing the Reflection Cracks of the Pavement using Glass Fiber Grids (유리섬유 그리드를 이용한 포장면 반사균열 억제)

  • 조성민;엄주용;이석근;김광우;전한용;장용채
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.35-38
    • /
    • 2000
  • Reflection cracks can be occurred in the asphalt layer overlaid on portland cement concrete pavements, because this layer is sensitive to environmental conditions including temperature changes and displacements of the pavement. A result of trial applications using glass fiber grids is introduced in this paper. Glass fiber grids were used between the asphalt layer and the concrete base to reduce the reflection crack of the asphalt layer. No cracks were observed in the glass grid installed area about 2 years later from trial constructions.

  • PDF

The Crack Resistance for PSG and Pe-Sin Films in the Semiconductor Device (반도체소자의 표면보호용 PSG, PE-SIN박막의 항균열특성에 대한 연구)

  • Ha, Jung-Min;Shin, Hong-Jae;Lee, Soo-Woong;Kim, Young-Wug;Lee, Jung-Kyu
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.166-174
    • /
    • 1993
  • Abstract The crack resistance of PSG(Phosphosilicate Glass) and PE-SiN(Plasma Enhanced CVD S${i_2}{N_4}$)films deposited on aluminium thin films on Si substrate was analyzed in this study. PSG was deposited by AP-CVD and PE- SiN by PE-CVD. All the films underwent repeated heat cycles at 45$0^{\circ}C$for 30 min. Crack formation and development were examined between each heat cycle. The crack behavior was found to be closely related to the stresses in the films. The stress induced by the difference in thermal expansion behavior between the passivation layers and underlying aluminum film may cause the crack. Crack resistance decreases as the thickness of PSG films increases due to the high tensile stress of the films. Phosphorus in the PSG films releases tensile stress and consequently the stress of the films tends to show compressive stress. As a result, crack resistance increased as the concentratin of P in the PSG films increased. Crack resistance in the PE-SiN films also increased with compressive stress. An experimental model to predict crack generation in the PSG and PE-SiN films during heat cycle was suggested.

  • PDF

Microstructural Aspects of Crack Propagation in All-Ceramic Materials (전부도재관용 도재의 미시적 균열전파 양상)

  • 김효성;최규형;정회웅;원대희;이민호;배태성
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.433-441
    • /
    • 1998
  • This study was performed to evaluate the effects of surface flaw on the fracture of all-ceramic materials. A feldspathic porce lain of VMK68, a cashable ceramic of IPS-Empress, and an alumina-glass composite of In-Ceram were used. Specimens were prepared as 12$\times$3$\times$1mm in dimensions, and a Vickers-produced indentation crack was made at the center of the tensile surface. Test specimens were immersed in dlstilled water and In oil, which were broken under a crosshead speed of 0.05 mm/min by 3-point bend test at 37$^{\circ}C$. The characteristic patterns of Vickers indentation and fracture surfaces were examined by an optical microscope and a scanning electron microscope. The fracture surfaces of the VMK68 and the IPS-Empress showed a median crack pattern at the fracture origin and indicated a tendency to cleavage hackle. The fracture surface of the alumina-glass composite, In-Ceram, showed a Palmqvist crack pattern at the fracture origin and indicated a tendency of toughening by the frictional Interlocking between the microstructurally rough fracture surfaces.

  • PDF

A study on fatigue properties of GFRP in synthetic sea water (인공해수중 GFRP의 피로특성에 관한 연구)

  • 김연직;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1351-1360
    • /
    • 1993
  • The fatigue behavior of GFRP composites is affected by environmental parameters. Therefore, we have to study on effect of sea water on fatigue behavior of GFRP composites as to maintain the safety and confidence in design of ocean structure of GFRP. In this paper, we investigated the fatigue properties of chopped strand glass mat/polyester composite in synthetic sea water. (pH 8.2) In case of the glass fiber (CSM type) reinforced polyester composite materials, the fatigue crack in the both dry and wet specimens tested in air or synthetic sea water occurred at the initial of cycle. Thereafter, it was divided with two regions that one decreased with the crack extension and the other increased with the crack extension. The transition point occurred during the crack propagation shifted to high ${\Delta}K$ value as load increase but its point is not changed regardless of immersion or test environment under a constant load. The synthetic sea water degrades the bond strength between fiber and matrix, thereby the tendency of rapid deceleration and acceleration of the crack growth was appeared.

Mechanical Behavior of Glass/Porous Alumina by Contact Loading (유리/다공성 알루미나의 접촉하중에 의한 기계적 거동)

  • Kim, Chul;Kim, Sang Kyum;Kim, Tae Woo;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.399-405
    • /
    • 2014
  • Porous alumina with different porosities, 5.2 - 47.5%, were coated with cover-glass having a thickness of $160{\mu}m$, using epoxy adhesive. We investigated the effect of the porosity of the substrate layer on the crack initiation load, and the size of cracks propagated in the coating layer. Hertzian indentations were used to evaluate the damage behavior under a constrained loading condition. Typically, two types of cracks, ring cracks and radial cracks, were observed on the surface of the glass/porous alumina structure. Indentation stress-strain curves, crack initiation loads, crack propagation sizes, and flexural strengths were investigated as a function of porosities. The results indicated that a porosity of less than 30% and a higher substrate elastic modulus were beneficial at suppressing cracks occurrence and propagation. We expect lightweight mechanical components with high strength can be successfully fabricated by coating and controlling porosities in the substrate layer.

Analysis of an Inclined Crack in Finite Composite Plate Under Mixed Mode Deformation (혼합모우드 변형하에 있는 복합재료 유한평판의 경사진 균열해석)

  • 염영진;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.625-635
    • /
    • 1989
  • Mixed mode fracture problem is analyzed for the finite orthotropic plate where an inclined crack parallel to the fiber direction is centrally placed. Modified mapping collocation method with both uniform stress and uniform displacement boundary conditions is utilized to calculate stress intensity correction factors for glass/epoxy and graphite/epoxy composites. Computed results are presented for selected combinations of crack length to width ratio L/W and plate aspect ratio H/W with various fiber orientations.

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF