• Title/Summary/Keyword: girder distribution

Search Result 183, Processing Time 0.02 seconds

Probabilistic condition assessment of structures by multiple FE model identification considering measured data uncertainty

  • Kim, Hyun-Joong;Koh, Hyun-Moo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.751-767
    • /
    • 2015
  • A new procedure is proposed for assessing probabilistic condition of structures considering effect of measured data uncertainty. In this procedure, multiple Finite Element (FE) models are identified by using weighting vectors that represent the uncertainty conditions of measured data. The distribution of structural parameters is analysed using a Principal Component Analysis (PCA) in relation to uncertainty conditions, and the identified models are classified into groups according to their similarity by using a K-means method. The condition of a structure is then assessed probabilistically using FE models in the classified groups, each of which represents specific uncertainty condition of measured data. Yeondae bridge, a steel-box girder expressway bridge in Korea, is used as an illustrative example. Probabilistic condition of the bridge is evaluated by the distribution of load rating factors obtained using multiple FE models. The numerical example shows that the proposed method can quantify uncertainty of measured data and subsequently evaluate efficiently the probabilistic condition of bridges.

Investigation of the Behavior of Lateral Load Distribution of Railway PSC Girder Bridges (철도 PSC빔교의 하중횡분배 거동에 관한 고찰)

  • Jung, Chan-Mook
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.422-428
    • /
    • 2011
  • This paper presents results from the theoretical analysis of the lateral load distribution for a railway bridge designed with PSC girders which is one of most popular types of bridge in Korea. Typically, 3 sets of intermediate cross beams within a span have been installed for lateral load distribution. In this paper, the effect on the lateral load distribution by the number of intermediate cross beams were examined by both simple grillage analysis and finite element method. This study showed that at least, one set of cross beams at midspan should be needed to ensure the proper load distribution. However, the effect of cross beams on the load distribution becomes not significant though more than one set of cross beams are installed. Therefore, only one set of cross beans at midspan is recommended for constructibility and economic efficiency.

Lateral Load Distribution Estimation of a PSC Girder Bridge from Dynamic Loading Test (동적재하시험을 통한 PSC 거더교의 횡분배 측정)

  • Kim, Sung-Wan;Cheung, Jin-Hwan;Kim, Seong-Do;Park, Jae-Bong;Lee, Myoung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.60-68
    • /
    • 2017
  • Since the bridge is the main facility of the road that is the core of the civil infrastructure, the bridge is constructed to ensure stability and serviceability during the traffic use. In order to secure the safety of bridges, evaluating the integrity of bridges at present is an important task in the maintenance work of bridges. In general, to evaluate the load carrying capacity of bridges, it is possible to confirm the superimposed behavior and symmetric behavior of bridges by estimating the lateral load distribution factor of the bridges through vehicle loading tests. However, in order to measure the lateral load distribution factor of a commonly used bridge, a static loading test is performed. There is a difficulty in traffic control. Therefore, in this study, the static displacement component of the bridge measured in the dynamic loading test and the ambient vibration test was extracted by using empirical mode decomposition technique. The lateral load distribution was estimated using the extracted static displacement component and compared with the lateral load distribution factor measured in the static loading test.

Finite Element Analysis Reinforced Concrete Slab Bridge Considering Elastic deformations of Reinforced Concrete T-type Piers (T형 교각의 탄성변형을 고려한 슬래브교의 유한요소 해석)

  • 이성철;윤동열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.100-110
    • /
    • 2000
  • In practical design of girder bridges or reinforced concrete slab bridges with T-type piers, it is usually assumed that vertical movements of superstructures are completely restrained at the locations of bearings(shoes) on a cap beam of the pier, The resulting vertical reactions are applied to the bearing for the calculation of bending moments and shear forces in the cap beam. However, in reality, the overhang parts of the cap beam will deform under the dead load of superstructures and the live load so that it may act as an elastic foundation. Due to the settlement of the elastic foundation, the actual distribution of the reactions at the bearings along the cap beam may be different from that obtained under the assumption that the vertical movements are fixed at the bearings. In the present study, investigated is the effects of elastic deformations of the T-type pier on the distribution of reactions at the bearings along the cap beam through 3-dimensional finite element analysis. Herein, for this purpose the whole structural system including the superstructure and piers as well is analyzed. It appears that the conventional practice which neglects the elastic deformations of the cap beam exhibits considerably different distributions of the reactions as compared with those obtained from the present finite element analysis. It is, therefore, recommended that in order to assess the reactions at bearings correctly the whole structural system be analyzed using 3-dimensional finite element analysis.

  • PDF

Dynamic analysis and shear connector damage identification of steel-concrete composite beams

  • Hou, Zhongming;Xia, He;Zhang, YanLing
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.327-341
    • /
    • 2012
  • With the advantages of large span, light deadweight and convenient construction, the steel-concrete composite beam (SCCB) has been rapidly developed as a medium span bridge. Compared with common beams, the global stiffness of SCCB is discontinuous and in a staged distribution. In this paper, the analysis model for the simply-supported SCCB is established and the vibration equations are derived. The natural vibration characteristics of a simply-supported SCCB are analyzed, and are compared with the theoretical and experimental results. A curvature mode measurement method is proposed to identify the shear connector damage of SCCB, with the stiffness reduction factor to describe the variation of shear connection stiffness. By analysis on the $1^{st}$ to $3^{rd}$ vertical modes, the distribution of shear connectors between the steel girder and the concrete slab are well identified, and the damage locations and failure degrees are detected. The results show that the curvature modes can be used for identification of the damage location.

Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles (이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석)

  • Lee Yong-Seon;Kim Sang-Ryo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

An Analytical Study on the Simplification of the Shape of PS Tendon Through the Optimization of Material Properties (재료 물성 최적화를 통한 PS 강연선의 형상 단순화에 관한 해석적 연구)

  • Do-Yeon Kim;Il-Young Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.555-561
    • /
    • 2024
  • This paper derives material properties of steel bars that simulate the distribution of stress and strain of prestressed tendons used in Prestressed concrete(PSC) girders and presents an optimal material model. ABAQUS software was used to establish the 3D solid model of the PSC girder and strand wire rope for a PS(Prestressed) tendon. Then the model of steel wire rope was imported into the Isight interface plugin directly through the ABAQUS and the Data Matching. In ABAQUS, the contact pairs were established, the models were meshed, the constraints were applied to solve the finite element model and an axial tension of 0.5m/s was loaded to analyze the stress and deformation distributions in the normal working range of the PS strand wire rope. In Data Matching, classical experimental data is fitted to the optimal material properties through finite element analysis and multi-objective optimization. The results show that the steel bar with optimal material properties presents a similar linear area and stress distribution with the PS tendon.

The Characteristics of Structural Behavior of Temporary Bridge Using Continuous Cross Beam (일체형 가로보를 이용한 임시교량의 구조적 거동특성)

  • Joo, Hyung-Joong;Lee, Young-Geun;Lee, Dong-Hyuk;Yoon, Soon-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.559-569
    • /
    • 2012
  • Cross-beam in the existing temporary bridge system is usually installed to prevent the lateral-torsional buckling of girders and to promote the construction efficiency. However, most of this cross-beams are connected to the girder web by bolts, and therefore, gravitational load resisting capacity of the cross-beams are negligibly small. In recent years, new temporary bridge system, in which the cross-beams and girders are connected to resist the external loads as a unit, was developed. In this paper, we present the experimental and analytical study results pertaining to the structural behavior and load carrying capacity of new temporary bridge system. From the results of study, it was found that the continuous cross-beam increased the flexural rigidity and reduced the maximum flexural stress in the girder. In addition, it was also found that the new temporary bridge system developed is more appropriate for the application in the long-span temporary bridge.

Prediction of Cracking and Ultimate Loads of Prestressed Concrete Anchorage Zones in Box-Girder Bridges (프리스트레스트 콘크리트 박스거더 교량 부재의 정착부 균열하중 및 극한하중의 예측)

  • 임동환;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.171-182
    • /
    • 1994
  • Recently, several prestressed concrete box girder bridges have experienced severe cracking along the tendon path when prestress force has been transferred to the anchorage zone. The purpose of the present study is therefore to explore characteristics of the local stress distribution, to study the effects of section geometry of anchorage zones, i.e., tendon inclination, tendon eccentricity and concrett. cover thickness anti to develop recornrncnd;itions for specific design criteria for post~tensioned a:lchorage zones. 7'0 accomplish these objectives, a cc~mprehen sive nonlinar finite element study has been conducted. From this study, realistic forrnulas for crackinq and ultimate load capacities are proposed. 'These equations reasonably well predict the crackinq and ultimate loads of prestressed concrete anchorage zones.

Analysis of Fatigue Truck Model for LRFD Code (LRFD 설계기준(안) 피로설계트럭 모형 분석)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.331-342
    • /
    • 2009
  • A reliability analysis of the fatigue failure of highway steel bridges was performed by applying the Miner's fatigue damage rule for the fatigue design truck proposed for the LRFD code and for the current DB 24 truck. The limit state function for fatigue failure is expressed as a function of various random variables that affect fatigue damage. Among these variables, the statistical parameters for the equivalent moment, the impact factor, and the loadometer were obtained by analyzing recently measured domestic traffic data, and the parameters for the fatigue strength, the girder distribution factor, and the headway factor were obtained from the measured data reported in literature. Based on the reliability analysis, the fatigue truck model for the LRFD code was proposed. After applying the proposed fatigue truck to the LRFD code, 16 composite plate and box girder bridges were designed based on the LRFD method, and the LRFD design results for the fatigue limit state were compared with those by the current KHBDC.