• Title/Summary/Keyword: ginsenoside Rh3

Search Result 217, Processing Time 0.024 seconds

Process Optimization of Ginseng Berry Extract Fermentation by Lactobacillus sp. Strain KYH isolated from Fermented Kimchi and Product Analysis (발효 김치로부터 분리한 Lactobacillus sp. Strain KYH를 이용한 진생베리 추출물 최적 발효 공정 확립 및 생성물의 특성 분석)

  • Ha, Yoo-Jin;Yoo, Sun-Kyun;Kim, Mee Ree
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.1
    • /
    • pp.88-98
    • /
    • 2016
  • The pharmacological effects of ginseng berry have been known to improve psychological function, immune activities, cardiovascular conditions, and certain cancers. It is also known that fermentation improves the bioavailability of human beneficial natural materials. Accordingly, we investigated the optimal fermentation conditions of ginseng berry extract with strain isolated from conventional foods. We also analyzed the fermentation product and its antioxidant activity. The bacterium isolated from fermented kimchi was identified as Lactobacillus sp. strain KYH. To optimize the process, fermentation was performed in a 5 L fermenter containing 3 L of ginseng berry extract at 200 rpm for 72 hr. Under optimized conditions, batch and fed-batch fermentations were performed. After fermentation, organic acids, amino acids, sugars, ginsenosides, and antioxidant activity were evaluated. The optimum fermentation conditions were determined as pH 7.0 and a temperature of $30^{\circ}C$, respectively. After fermentation, the amounts and compositions of organic acids, amino acids, sugars, ginsenosides, and antioxidant activity were altered. In comparing the distribution of ginsenosides with that before fermentation, the ginsenoside Re was a major product. However, amounts of ginsenosides Rb1, Rc, and Rd were reduced, whereas amounts of ginsenosides Rh1 and Rh2 increased. Total phenol content increased to 43.8%, whereas flavonoid content decreased to 19.8%. The DPPH radical scavenging activity and total antioxidant activity increased to 27.2 and 19.4%, respectively.

Compatibility effects of ginseng and Ligustrum lucidum Ait herb pair on hematopoietic recovery in mice with cyclophosphamide-induced myelosuppression and its material basis

  • Han, Jiahong;Dai, Min;Zhao, Yan;Cai, Enbo;Zhang, Lianxue;Jia, Xiaohuan;Sun, Nian;Fei, Xuan;Shu, Hui
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.291-299
    • /
    • 2020
  • Background: Ginseng (G) and Ligustrum lucidum Ait (LLA) are core traditional Chinese medicines in treating myelosuppression formula. The present study was designed to profile effect of G and LLA herb pair (G-LLA) on myelosuppressed mice. Methods: The mice myelosuppression model was established by intraperitoneal (i.p.) injection of cyclophosphamide (Cy). Hematopoietic function of bone marrow was measured by hemopoietic progenitor cell culture and peripheral blood count, and serum hemopoietic factors were tested by enzyme-linked immunosorbent assay. Bone marrow cell cycle was performed by flow cytometry. HPLC was used to measure 20 potential chemical components related to myelosuppression, including ginsenoside Rg1, Re, Rb1, Rc, Rb2, Rb3, Rd, Rk3, Rh4, 20 (S)-Rg3, 20 (R)-Rg3, Rk1, Rg5, salidroside, and so on. Results: G, LLA, and G-LLA improved the amount of peripheral blood cells and bone marrow cells of myelosuppressed mice (P < 0.01). They significantly increased the colony quantity of colony-forming unit-granulocyte macrophage, burst-forming unit-erythroid, colony-forming unit-erythroid, and colony-forming unit-megakaryocyte and amount of G2/M and S phase cells (P < 0.01). They also significantly decreased the amount of hematopoiesis-related cytokines (P < 0.01). The content of chemical components in G-LLA changed, and the change of rare saponin was the most obvious. Conclusion: These results show that G-LLA herb pair might produce synergistic or complementary compatibility effects on bone marrow suppression after chemotherapy. It suggests that the substance basis of G-LLA for treating bone marrow suppression may be effective chemical components.

Biosynthesis of rare 20(R)-protopanaxadiol/protopanaxatriol type ginsenosides through Escherichia coli engineered with uridine diphosphate glycosyltransferase genes

  • Yu, Lu;Chen, Yuan;Shi, Jie;Wang, Rufeng;Yang, Yingbo;Yang, Li;Zhao, Shujuan;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • Background: Ginsenosides are known as the principal pharmacological active constituents in Panax medicinal plants such as Asian ginseng, American ginseng, and Notoginseng. Some ginsenosides, especially the 20(R) isomers, are found in trace amounts in natural sources and are difficult to chemically synthesize. The present study provides an approach to produce such trace ginsenosides applying biotransformation through Escherichia coli modified with relevant genes. Methods: Seven uridine diphosphate glycosyltransferase (UGT) genes originating from Panax notoginseng, Medicago sativa, and Bacillus subtilis were synthesized or cloned and constructed into pETM6, an ePathBrick vector, which were then introduced into E. coli BL21star (DE3) separately. 20(R)-Protopanaxadiol (PPD), 20(R)-protopanaxatriol (PPT), and 20(R)-type ginsenosides were used as substrates for biotransformation with recombinant E. coli modified with those UGT genes. Results: E. coli engineered with $GT95^{syn}$ selectively transfers a glucose moiety to the C20 hydroxyl of 20(R)-PPD and 20(R)-PPT to produce 20(R)-CK and 20(R)-F1, respectively. GTK1- and GTC1-modified E. coli glycosylated the C3-OH of 20(R)-PPD to form 20(R)-Rh2. Moreover, E. coli containing $p2GT95^{syn}K1$, a recreated two-step glycosylation pathway via the ePathBrich, implemented the successive glycosylation at C20-OH and C3-OH of 20(R)-PPD and yielded 20(R)-F2 in the biotransformation broth. Conclusion: This study demonstrates that rare 20(R)-ginsenosides can be produced through E. coli engineered with UTG genes.

Effects of Die Temperature and Repeated Extrusion on Chemical Components and Antioxidant Properties of Extruded White Ginseng (사출구 온도와 반복 압출성형이 백삼압출성형물의 화학적 조성 및 항산화 활성에 미치는 영향)

  • Choi, Kwan-Hyung;Gui, Ying;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.258-264
    • /
    • 2014
  • This study investigated the effects of die temperature and repeated extrusion on the chemical components and antioxidant properties of extruded white ginseng (EWG). Die temperature was adjusted to 100, 120, and followed by repeated extrusion under the same conditions with corresponding samples. Secondary extruded white ginseng (SEWG) at a die temperature of $120^{\circ}C$ had the highest acidic polysaccharide content of all extrudates. Increasing die temperature and repeated extrusion both increased crude saponin content of the extrudate. Ginsenoside Rh1 was detected in the EWG ($140^{\circ}C$) and SEWGs, whereas ginsenosides Rg3s and Rg3r were only detected in SEWG ($140^{\circ}C$). The highest total phenolic content, DPPH radical scavenging activity, and reducing power obtained from SEWG ($140^{\circ}C$) were $8.55{\pm}0.03$ mg/g, $72.05{\pm}0.63%$, and $0.80{\pm}0.004$, respectively. In conclusion, repeated extrusion increases antioxidant activity and crude saponin contents for the development of improved ginseng products.

Analysis of Immunomodulating Gene Expression by cDNA Microarray in $\beta$-Glucan-treated Murine Macrophage

  • Sung, Su-Kyong;Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.98-98
    • /
    • 2003
  • ${\beta}$-(1,3)-D-Glucans have been known to exhibit antitumor and antimicrobial activities. The presence of dectin-1,${\alpha}$, ${\beta}$-glucan receptor of dendritic cell, on macrophage has been controvertial. RT-PCR analysis led to the detection of dectin-1${\alpha}$ and ${\beta}$ in murine macrophage Raw264.7 cell line. Among the various organs of mouse, dectin-1${\alpha}$ and ${\beta}$ were detected in the thymus, lung, spleen, stomach and intestine. To analyze gene expression modulated by ${\beta}$-glucan treated murine Raw264.7 macrophage, total mRNA was applied to cDNA microarray to interrogate the expression of 7,000 known genes. cDNA chip analysis showed that ${\beta}$-glucan of P. osteatus increased gene expressions of immunomodulating genes, membrane antigenic proteins, chemokine ligands, complements, cytokines, various kinases, lectin associated genes and oncogenes in Raw 264.7 cell line. When treated with ${\beta}$-glucan of P. osteatus and LPS, induction of gene expression of TNF-${\alpha}$ and IFN-R1 was confirmed by RT-PCR analysis. Induction of TNF-R type II expression was confirmed by FACS analysis. IL-6 expression was abolished by EDTA in ${\beta}$-glucan and LPS treated Raw264.7 cell line, indicating that ${\beta}$-glucan binds to dectin-l in a Ca$\^$++/ -dependent manner. To increase antitumor efficacy of ${\beta}$-glucan, ginsenoside Rh2 (GRh2) was co-treated with ${\beta}$-glucan in vivo and in vitro tests. IC$\sub$50/ values of GRh2 were 20 and 25 $\mu\textrm{g}$/$m\ell$ in SNU-1 and B16 melanoma F10 cell line, respectively. Co-treatment with ${\beta}$-glucan and GRh2 showed synergistic antitumor activity with cisplatin and mitomycin C both in vitro and in vivo. Single or co-treatment with ${\beta}$-glucan and GRh2 increased tumor bearing mouse life span. Co-treatment with ${\beta}$-glucan and GRh2 showed more increased life span with mitomycin C than that with cisplatin. Antitumor activities were 67% and 72 % by co-injection with ${\beta}$-glucan and GRh2 in the absence or presence of mitomycin C, respectively.

  • PDF

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.

Effects on Ginseng Growth and Ginsenoside Content in ICT-based Process Cultivation and Conventional Cultivation (ICT 기반의 공정재배와 관행재배에 있어서 인삼 생장 및 진세 노사이드 함량에 미치는 영향)

  • Kwang Jin Chang;Yeon Bok Kim;Hyun Jung Koo;Hyun Jin Baek;Eui Gi Hong;Su Bin Lee;Jeei Hye Choi;Hyo Yeon Son;Tae Young Kim;Dong Hyun Kim
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.2
    • /
    • pp.12-19
    • /
    • 2023
  • This study conducted an experiment with EC 1.0ms/cm ratio and excellent soil conditions for germination in ICT-based ginseng process cultivation. The first growth survey was conducted before transplantation of ginseng 1-year roots grown by seeding ginseng in the process cultivation, conventional cultivation and a second growth comparison survey was conducted after 3 months of growth. In the results, it was confirmed that ginseng grown in the process cultivation grew more than in the field. As a result of comparing the contents of 11 ginsenosides of 1-year and 2-year-old ginsenosides in the process cultivation and conventional cultivation ginseng, it was confirmed that the content of the process cultivation ginseng was higher than that of practice cultivation ginseng. In conclusion, conventional cultivation ginseng grows due to various factors under the natural cultivation environment, but process cultivation can secure the growth stability of ginseng by allowing stable soil and environmental control, so continuous research is needed in the future.