• Title/Summary/Keyword: ginseng cultivation

Search Result 351, Processing Time 0.028 seconds

Effects on Ginseng Growth and Ginsenoside Content in ICT-based Process Cultivation and Conventional Cultivation (ICT 기반의 공정재배와 관행재배에 있어서 인삼 생장 및 진세 노사이드 함량에 미치는 영향)

  • Kwang Jin Chang;Yeon Bok Kim;Hyun Jung Koo;Hyun Jin Baek;Eui Gi Hong;Su Bin Lee;Jeei Hye Choi;Hyo Yeon Son;Tae Young Kim;Dong Hyun Kim
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.2
    • /
    • pp.12-19
    • /
    • 2023
  • This study conducted an experiment with EC 1.0ms/cm ratio and excellent soil conditions for germination in ICT-based ginseng process cultivation. The first growth survey was conducted before transplantation of ginseng 1-year roots grown by seeding ginseng in the process cultivation, conventional cultivation and a second growth comparison survey was conducted after 3 months of growth. In the results, it was confirmed that ginseng grown in the process cultivation grew more than in the field. As a result of comparing the contents of 11 ginsenosides of 1-year and 2-year-old ginsenosides in the process cultivation and conventional cultivation ginseng, it was confirmed that the content of the process cultivation ginseng was higher than that of practice cultivation ginseng. In conclusion, conventional cultivation ginseng grows due to various factors under the natural cultivation environment, but process cultivation can secure the growth stability of ginseng by allowing stable soil and environmental control, so continuous research is needed in the future.

Simultaneous determination and difference evaluation of 14 ginsenosides in Panax ginseng roots cultivated in different areas and ages by high-performance liquid chromatography coupled with triple quadrupole mass spectrometer in the multiple reaction-monitoring mode combined with multivariate statistical analysis

  • Xiu, Yang;Li, Xue;Sun, Xiuli;Xiao, Dan;Miao, Rui;Zhao, Huanxi;Liu, Shuying
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.508-516
    • /
    • 2019
  • Background: Ginsenosides are not only the principal bioactive components but also the important indexes to the quality assessment of Panax ginseng Meyer. Their contents in cultivated ginseng vary with the growth environment and age. The present study aimed at evaluating the significant difference between 36 cultivated ginseng of different cultivation areas and ages based on the simultaneously determined contents of 14 ginsenosides. Methods: A high-performance liquid chromatography (HPLC) coupled with triple quadrupole mass spectrometer (MS) method was developed and used in the multiple reaction-monitoring (MRM) mode (HPLC-MRM/MS) for the quantitative analysis of ginsenosides. Multivariate statistical analysis, such as principal component analysis and partial least squares-discriminant analysis, was applied to discriminate ginseng samples of various cultivation areas and ages and to discover the differentially accumulated ginsenoside markers. Results: The developed HPLC-MRM/MS method was validated to be precise, accurate, stable, sensitive, and repeatable for the simultaneous determination of 14 ginsenosides. It was found that the 3- and 5-yr-old ginseng samples were differentiated distinctly by all means of multivariate statistical analysis, whereas the 4-yr-old samples exhibited similarity to either 3- or 5-yr-old samples in the contents of ginsenosides. Among the 14 detected ginsenosides, Rg1, Rb1, Rb2, Rc, 20(S)-Rf, 20(S)-Rh1, and Rb3 were identified as potential markers for the differentiation of cultivation ages. In addition, the 5-yr-old samples were able to be classified in cultivation area based on the contents of ginsenosides, whereas the 3- and 4-yr-old samples showed little differences in cultivation area. Conclusion: This study demonstrated that the HPLC-MRM/MS method combined with multivariate statistical analysis provides deep insight into the accumulation characteristics of ginsenosides and could be used to differentiate ginseng that are cultivated in different areas and ages.

Factors Affecting Agrobacterium tumefaciens-mediated Transformation of Panax ginseng C.A. Meyer

  • Kim, Ok-Tae;Jung, Su-Jin;Bang, Kyong-Hwan;Kim, Young-Chang;Shin, Yu-Su;Sung, Jung-Sook;Park, Chun-Geon;Seong, Nak-Sul;Cha, Seon-Woo;Park, Hee-Woon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.100-104
    • /
    • 2007
  • A protocol for the production of transgenic Panax ginseng C.A. Meyer was established via Agrobacterium tumefaciens-mediated genetic transformation of direct somatic embryos. A number of conditions related to the co-cultivation were tested with respect to maximizing transformation efficiency. The results showed that pH of the co-cultivation medium (5.7), the bacterial growth phase (optical density; $OD_{600}$ = 0.8), co-cultivation period (3 days), and acetosyringone concentration $(100\;{\mu}M)$ had positive effects on transformation. Selected plantlets were cultured on the medium at an elevated hygromycin level(30 mg/l). Integration of the transgenes into the P. ginseng nuclear genome was confirmed by PCR analysis using hpt primers and by Southern hybridization using hpt-specific probe. The transgenic plantlets were obtained after 3-month cultivation and did not show any detectable variation in morphology or growth characteristics compared to wild-type plants.

Quantitative Analysis of Dammarane-type Ginsenosides in Different Ginseng Products

  • Lee, Dong Gu;Quilantang, Norman G.;Lee, Ju Sung;Geraldino, Paul John L.;Kim, Hyun Young;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.229-234
    • /
    • 2018
  • Ginseng products available in different forms and preparations are reported to have varied bioactivities and chemical compositions. In our previous study, four new dammarane-type ginsenosides were isolated from Panax ginseng, which are ginsenoside Rg18 (1), 6-acetyl ginsenoside Rg3 (2), ginsenoside Rs11 (3), and ginsenoside Re7 (4). Accordingly, the goal of this study was to determine the distribution and content of these newly characterized ginsenosides in different ginseng products. The content of compounds 1 - 4 in different ginseng products was determined via HPLC-UV. The samples included ginseng roots from different ginseng species, roots harvested from different localities in Korea, and samples harvested at different cultivation ages and processed under different manufacturing methods. The four ginsenosides were present at varying concentrations in the different ginseng samples examined. The variations in their content could be attributed to species variation, and differences in cultivation conditions and manufacturing methods. The total concentration of compounds 1 - 4 were highest in ginseng obtained from Geumsan ($185{\mu}g/g$), white-6 yr ginseng ($150{\mu}g/g$), and P. quinquefolius ($186{\mu}g/g$). The results of this study provide a basis for the optimization of cultivation conditions and manufacturing methods to maximize the yield of the four new ginsenosides in ginseng.

Comparison of Growth Characteristics and Ginsenoside Content of Ginseng (Panax ginseng C. A. Meyer) Cultivated with Greenhouse and Traditional Shade Facility (비닐하우스와 관행재배 인삼의 생육특성 및 진세노사이드 함량 비교)

  • Lee, Sung-Woo;Kim, Gum-Sook;Hyun, Dong-Yun;Kim, Yong-Burm;Kim, Jang-Wook;Kang, Seung-Won;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.157-161
    • /
    • 2011
  • Growth characteristics, root yield and ginsenoside contents of 3-year-old ginseng in greenhouse shaded by $30^{\circ}$ sloped-curtain made of aluminum were compared to traditional shade facility in order to develop cultural practice for organic ginseng. Light transmittance ratio in greenhouse with $30^{\circ}$ sloped-curtain shade was distinctly lower than that of traditional shade from sunrise to 9 a.m., while its ratio in greenhouse was higher than traditional shade since 9 a.m. due to the reflection of light. Air temperature of greenhouse was $1.3^{\circ}C$ higher than that of traditional shade on the first ten days of August due to more reflected light. Root yield of greenhouse was 44% higher than that of traditional cultivation because of the inflow of reflected light and the decrease of disease of Alternaria and Anthracnose by blocking rainfall. Dry matter partitioning ratio of rhizome and lateral root were increased in ginseng cultivated at greenhouse due to longer survival time in leaf than traditional cultivation. Total ginsenoside contents cultivated at greenhouse was decreased in the part of taproot, while it was increased in the part of lateral and fine root compare to traditional cultivation. Individual ginsenoside contents between greenhouse and traditional cultivation showed significant difference more frequent in fine root than taproot and lateral root. Total ginsenoside contents including $Rb_1$, $Rb_2$, Rc, Rd, Re, Rf, $Rg_1$, and $Rg_2$ in whole root of 3-year-old ginseng did not showed significant difference by greenhouse and traditional cultivation.

Changes in Growth, Active Ingredients, and Rheological Properties of Greenhouse-cultivated Ginseng Sprout during its Growth Period (하우스에서 재배된 새싹인삼의 재배시기별 생육, 유효성분 및 물성의 변화)

  • Seong, Bong Jae;Kim, Sun Ick;Jee, Moo Geun;Lee, Hee Chul;Kwon, A Reum;Kim, Hyun Ho;Won, Jun Yeon;Lee, Ka Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.2
    • /
    • pp.126-135
    • /
    • 2019
  • Background: The ginseng ginsenosides, which have various physiological activities, are known to be more abundant in the leaves than in the roots, and the consumers' interest in ginseng sprout as a functional vegetable has been increasing. Methods and Results: The aim of this study was to investigate the effects of growth period on growth properties, active ingredients and rheology of ginseng sprouts cultivated in a non-heated greenhouse equipped with a shade net for 60 days, starting from the end of May to the middle of July. The chlorophyll content of the leaves decreased, but their length and width increased with increasing cultivation days. In particular, growth increased significantly until 40 days, but only slightly after 50 days. The stem length did not increase greatly from the 20 th to the 30 th day of cultivation, but increased significantly from the 30 th to the 40 th day, and then further increased gradually. The weight of the leaves, stems, and roots increased slightly, but not change significantly. After 40 days of cultivation, the total ginsenoside content increased by 1.07 times in the leaves and decreased by 0.80 times in the roots with increasing cultivation days. The leaf contents of ginsenosides $Rg_1$, Re, $Rb_1$, Rc, $F_3$ and $F_4$ increased with increasing cultivation days. The rheological properties of ginseng sprout showed the greatest influence on stem hardening with increasing cultivation days. Conclusions: Therefore, based on the growth characteristics, active ingredients and physical properties, 40 days after sowing was considered to be an appropriate harvesting time for ginseng sprouts.

Possibility for the Replacement of Recycled Plastic Products on Timber Ginseng Cultivation Facilities (목재 인삼재배시설에 대한 재생플라스틱의 대체 가능성 평가)

  • Song, Hosung;Lim, Seong-Yoon;Kim, Yu-Yong;Yu, Seok-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.45-52
    • /
    • 2023
  • This study was conducted to examine the possibility of use as a structural material for ginseng cultivation facilities of recycled plastics. In order to determine the possibility that recycled plastic can replace timber used as a structural material for ginseng cultivation facilities, the specimens collected by elapsed time were compared with timber through bending tests. In addition, in order to analyze the effect of external environmental conditions on recycled plastic products, bending test was conducted with the specimens that had completed weathering test and accelerated heat aging test respectively. As a result, the bending strength of recycled plastic specimens with the elapsed time of 360 days was lower than that of timber. But bending strength of recycled plastic specimens exceeded the design allowable stress standard set by the Korea design standard (MOLIT, 2016). There was no degradation in quality of recycled plastic due to the external environment, and it was found that there would be no problem even if it was used as a structural material for ginseng cultivation facilities.

Field Survey on the Shading Structure and Environmental Management for Ginseng Cultivation (인삼재배시설의 구조 및 환경관리 실태조사)

  • Nam, Sang-Woon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.65-68
    • /
    • 2002
  • This study was conducted to secure the structural safety and to build fundamental data for development of controlled environment facilities in ginseng cultivation. Shading structures of ginseng cultivation were classified with materials, structural forms, and detailed setups. They are wood or steel pipe, single or multi span, and frame or cable type. For structures having representative forms and dimensions, modeling for structural analysis was builded by SAP2000. And there was almost no farm carrying out the environmental management specially.

  • PDF

Farm Study of Direct Seeding Cultivation of the Korean Ginseng(Panax ginseng C. A. Meyer) (고려인삼의 직파재배에 관한 조사 연구)

  • Won, Jun-Yeon;Jo, Jae-Seong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.4
    • /
    • pp.308-313
    • /
    • 1999
  • Direct seeding is a cultivation method of Korean ginseng which can cut down production cost and increase productivity. This study was conducted to obtain detailed information about this method and to aid the development of it in Korea. Major pre-crops before ginseng cultivation were rice, corn and rye, and organic matters, such as rice straw, rye straw and poultry feces were used for basal fertilization. In direct seeding of the ginseng field, seeding density was 196 to 210 seeds per $3.3m^2$ and germination ratio was 67%. Survival ratio of 4-year-old ginsengs which were products of direct seeding was 51%, and more than 100 plants per $3.3m^2$ survived. The most critical diseases in the directly seeded ginseng field were grey mold, damping off, and stem diseases including stem spot disease. Plant growth of the ginseng cultivated by the direct seeding method was not different from the ginseng cultivated by transplanting method. But the root of the ginseng cultivated by the direct seeding method took the shape of a shorter main root compared to the ginseng cultivated by the transplanting method. Root yield per $3.3m^2$ of the direct seeding ginseng field was larger compared to the field of the transplanting cultivation.

  • PDF

An Analysis on Site, Soil and Cultivation Characteristics of Korean Mountain Cultivated Ginseng (Panax ginseng) Field (산양삼 재배지의 입지, 토양 및 재배특성 분석)

  • Kwon, Su-Deok;Kang, Jeong-Hee;Yoon, Jun-Hyuck;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.81-88
    • /
    • 2011
  • This study was carried out to provide basic information for standard cultivation guideline of Korean mountain cultivated ginseng (Panax ginseng). Environmental conditions, soil properties, growth process, cultivation methods and sowing timing were investigated in cultivations of Korean mountain cultivated ginseng in Korea (18 region in 9 province). Most of Korean mountain cultivated ginseng was cultivated to north, north-east, east or north-west direction in broad-leaved forest, IV age group, and 500~1,000 trees/ha. Elevation was below 500 m and slope was below $25^{\circ}$ in cultivation. There were significant differences in soil properties by region and cultivation based on organic matter (3.43~24.07%) and pH level (3.8~5.7). Sprouting, leaf unfolding, flowering, fruiting, red ripening, fruit drop and leaf drop of Korean mountain cultivated ginseng was investigated in cultivation. The results show that it took 98 days on average for the whole growth process. There were two methods, sowing and transplant for cultivation. Sowing methods were classified in sowing after opening-testa treatment and direct sowing. and it was 70% and 30%, respectively.