• Title/Summary/Keyword: ginseng component

Search Result 321, Processing Time 0.023 seconds

Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1

  • Ryu, Hojin;Park, Hoon;Suh, Dong-Sang;Jung, Gun Ho;Park, Kyungseok;Lee, Byung Dae
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.215-219
    • /
    • 2014
  • Background: Biological control of plant pathogens using benign or beneficial microorganisms as antagonistic agents is currently considered to be an important component of integrated pest management in agricultural crops. In this study, we evaluated the potential of Bacillus subtilis strain HK-CSM-1 as a biological control agent against Colletotrichum panacicola. Methods: The potential of B. subtilis HK-CSM-1 as a biological control agent for ginseng anthracnose was assessed. C. panacicola was inoculated to ginseng plants and the incidence and severity of disease was assessed to examine the efficacy of the bacterium as a biological control against C. panacicola. Results: Inoculation of Panax ginseng plants with B. subtilis significantly suppressed the number of disease lesions of C. panacicola and was as effective as the chemical fungicide iminoctadine tris(albesilate). The antifungal activity of B. subtilis against C. panacicola was observed on a co-culture medium. Interestingly, treatment with B. subtilis did not significantly affect the diameter of the lesions, suggesting that the mechanism of protection was through the reduction in the incidence of infection related to the initial events of the infection cycle, including penetration and infection via spore germination and appressorium formation rather than by the inhibition of invasive growth after infection. Conclusion: Our results suggest that B. subtilis HK-CSM-1 can be used as an effective and ecologically friendly biological control agent for anthracnose in P. ginseng.

Red Ginseng Marc and Steamed Extraction Powder Enhance Proliferation and Inflammatory Cytokine Modulation in Canine PBMCs Stimulated by IL-2

  • Ju-Hyun An;Qiang Li;Su-Min Park;Kyoung-Bo Kim;Yeong-Deuk Yi;Yong-Bum Song;Woo-Jin Song;Hwa-Young Youn
    • Journal of Veterinary Clinics
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • The growing market for companion animals, combined with their increasing lifespan, has generated an increased interest in companion animal immunity enhancers. Ginsenoside, a saponin component of ginseng and an essential ingredient of red ginseng marc (produced during red ginseng production), is effective in improving immunity. In this experiment, a powder mixture of red ginseng marc and steamed red ginseng extract powder (RGME) was orally administered to dogs for eight weeks. Subsequently, blood samples were collected and tested every four weeks. In addition, canine peripheral blood mononuclear cells (cPBMCs) were stimulated with or without interleukin-2 (IL-2) to evaluate their proliferation and cytokine secretion abilities. Proliferation assay suggests that the administration of RGME effectively enhanced numbers of cPBMCs under IL-2 stimulation. Furthermore, in the RGME group, a significant increase in the concentration of interferon gamma released from cPBMCs under IL-2 stimulation was observed. In conclusion, RGME might be an effective health supplement for improving immunity in dogs.

The Effects of Alkaloid Fraction of Korean Ginseng on the Radiation-Induced DNA Strand Breaks (방사선 조사에 의한 DNA Double Strand Breaks의 생성 및 회복에 미치는 인삼 알칼로이드 분획의 효과)

  • Cho Chul Koo;Kim Tae Hwan;Yoo Seong Yul;Koh Kyoung Hwan;Kim Mi Sook;Kim Jeong Hee;Kim Seong Ho;Yoon Hyung Keun;Ji Young Hoon
    • Radiation Oncology Journal
    • /
    • v.13 no.2
    • /
    • pp.113-120
    • /
    • 1995
  • Purpose : To investigate the effect of alkaloid fraction from Korean ginseng on radiation-induced DNA double strand breaks (dsb) formation and repair in murine lymphocytes Materials and Methods : We used the neutral filter elution technique to assay $^{60}Co\;{\gamma}$ ray-induced DNA double strand breaks formation and repair in C57BL/6 mouse spleen lymphocytes for evaluating the dose-response relationship in the presence of alkaloid fraction as a radioprotective agent. The lymphocytes were stimulated with Phytohemagglutinin (PHA, 2 u g/ml) to label $^3[H]-thymidine.$ Isotope-labelled lymphocytes in suspension were exposed to 100 Gy at $0^{\cdot}C$ in the alkaloid fraction-treated group and elution procedure was performed at PH 9.6. The extents of formation of radiation-induced DNA double strand breaks and repair were compared respectively via strand scission factor (SSF) and relative strand scission factor (RSSF). Results: Alkaloid fraction reduced the formation of double strand breaks with dose modification factor of 2 15, compared to control group Rejoining of DNA dsb appeared to take place via two components. The first fast component was completed within 20.4 minutes, but the second slow component was not completed until 220.2 minutes after irradiation. About $30\%$ of dsb formed by irradiation was ultimately unrejoined despite the administration of alkaloid fraction. The administration of alkaloid fraction had a great effect on the second slow component of repair; the half-time of fast component repair was not changed, but that of slow component was 621.8 minutes. Conclusion: Neutral filter elution assay Proved to be a very effective method to quantitate the extents of DNA dsb formation and its repair. By using this technique, we were able to evaluate the efficiency of alkaloid fraction from Korean ginseng as a valuable radioprotector. Alkaloid fraction can be used prophylactically to prevent or ameliorate the severe radiation damages in workers and neighbors around the atomic power plants. For more refined study, however, more advanced purification of alkaloid fraction wil be needed in the near future.

  • PDF

Production of ginsenoside F1 using commercial enzyme Cellulase KN

  • Wang, Yu;Choi, Kang-Duk;Yu, Hongshan;Jin, Fengxie;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.121-126
    • /
    • 2016
  • Background: Ginsenoside F1, a pharmaceutical component of ginseng, is known to have antiaging, antioxidant, anticancer, and keratinocyte protective effects. However, the usage of ginsenoside F1 is restricted owing to the small amount found in Korean ginseng. Methods: To enhance the production of ginsenoside F1 as a 10 g unit with high specificity, yield, and purity, an enzymatic bioconversion method was developed to adopt the commercial enzyme Cellulase KN from Aspergillus niger with food grade, which has ginsenoside-transforming ability. The proposed optimum reaction conditions of Cellulase KN were pH 5.0 and $50^{\circ}C$. Results: Cellulase KN could effectively transform the ginsenosides Re and Rg1 into F1. A scaled-up biotransformation reaction was performed in a 10 L jar fermenter at pH 5.0 and $50^{\circ}C$ for 48 h with protopanaxatriol-type ginsenoside mixture (at a concentration of 10 mg/mL) from ginseng roots. Finally, 13.0 g of F1 was produced from 50 g of protopanaxatriol-type ginsenoside mixture with $91.5{\pm}1.1%$ chromatographic purity. Conclusion: The results suggest that this enzymatic method could be exploited usefully for the preparation of ginsenoside F1 to be used in cosmetic, functional food, and pharmaceutical industries.

Lipid and Lipase Distribution on Endosperm Cell of Panax ginseng Seed for the Electron Microscope (전자현미경을 이용한 인삼종자 배유세포내의 지질 및 지질가수분해 효소의 분포)

  • 유성철;노미전
    • Journal of Ginseng Research
    • /
    • v.16 no.2
    • /
    • pp.129-137
    • /
    • 1992
  • This study was carried out to investigate the localization of lipids and lipase activity with lipid staining and cytochemical technique in endosperm cells of Panax ginseng C.A. Meyer seed. In endosperm cells of indehiscent seed, protein bodies facing the umbiliform layer are different in electron density during the various degraded processes. Gradually, protein matrix near the cell wall was lysed and electron lucent inclusions appeared on umbiliform layer. The protein body with high electron density and the spherosome with low electron density were observed in endosperm cells. As a result of lipid staining, electron density of spherosome is more intense than those of the protein matrix within the protein body in endosperm cells of indehiscent seed. Free spherical spherosomes within the umbiliform layer have a high electron density. The spherical spherosomes were more electron densed and were uniform in comparison with the cytoplasmic proteinaceous granules in endosperm cells of seed with red seed coat. The major component of spherosome was determined to be lipid. Lipase activity occurs in the spherosome and near the endosperm cell wall facing the umbiliform layer. Cytochemical reaction products of lipase were observed in the spherosome membrane and in the inner regions of spherosome. After protein bodies were digested, lipase activities were observed in free spherosomes and near the cell wall of endosperm cells. Umbiliform layer composing of fibrillized wall and digested materials of the endosperm cell showed a little lipase reaction products.

  • PDF

Effect of the Combination of Total Saponin of Red Ginseng and Coisis Semen for the Prevention and Treatment of Obesity (홍삼(紅蔘) 총사포닌과 의이인(薏苡仁) 혼합물이 비만(肥滿) 치료 및 억제에 미치는 영향)

  • Kim, In-Kyoung;Min, Sang-Yeon;Kim, Jang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • Objectives: This study was on the pharmaceutical components in purified ginseng total saponin (GTS), coisis semen (CS), the combination of these drugs, and the major component of coicis coixol for the prevention and treatment of obesity. Methods: In this study, to evaluate the effect on the suppression of obesity, high fat diet-induced obese rats were treating with the drugs, the effects on the balance of energy and diet activity were examined, and the change of weight, the change of the intake of diet, body fat rate, etc. were assessed. Results: The results demonstrate that in high fat diet-induced obese white rats, the combination treatment of ginseng total saponin and coicis was effective in suppression of weight gain, reduction of intake of food, and reduction of body fat. Conclusions: The results suggest that a combination treatment with major components of red ginseng total saponin and coicis may be used therapeutically for the suppression and treatment of obesity.

  • PDF

Ginsenoside Rk1 is a novel inhibitor of NMDA receptors in cultured rat hippocampal neurons

  • Ryoo, Nayeon;Rahman, Md. Ataur;Hwang, Hongik;Ko, Sung Kwon;Nah, Seung-Yeol;Kim, Hyoung-Chun;Rhim, Hyewhon
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.490-495
    • /
    • 2020
  • Background: Ginsenoside Rk1, a saponin component isolated from heat-processed Panax ginseng Meyer, has been implicated in the regulation of antitumor and anti-inflammatory activities. Although our previous studies have demonstrated that ginsenoside Rg3 significantly attenuated the activation of NMDA receptors (NMDARs) in hippocampal neurons, the effects of ginsenosides Rg5 and Rk1, which are derived from heat-mediated dehydration of ginsenoside Rg3, on neuronal NMDARs have not yet been elucidated. Methods: We examined the regulation of NMDARs by ginsenosides Rg5 and Rk1 in cultured rat hippocampal neurons using fura-2-based calcium imaging and whole-cell patch-clamp recordings. Results: The results from our investigation showed that ginsenosides Rg3 and Rg5 inhibited NMDARs with similar potencies. However, ginsenoside Rk1 inhibited NMDARs most effectively among the five compounds (Rg3, Rg5, Rk1, Rg5/Rk1 mixture, and protopanaxadiol) tested in cultured hippocampal neurons. Its inhibition is independent of the NMDA- and glycine-binding sites, and its action seems to involve in an interaction with the polyamine-binding site of the NMDAR channel complex. Conclusion: Taken together, our results suggest that ginsenoside Rk1 might be a novel component contributable to the development of ginseng-based therapeutic treatments for neurodegenerative diseases.

Agronomic Characteristics and Chemical Component of Hybrid between Panax ginseng C. A. Meyer and Panax quinquefolius L. (고려인삼과 미국삼 종간잡종의 형질 및 성분특성)

  • Chung, Youl-Young;Chung, Chan-Moon;Jo, Jae-Seong
    • Journal of Ginseng Research
    • /
    • v.27 no.4
    • /
    • pp.183-187
    • /
    • 2003
  • This study was carried out to ascertain the basic information on characteristics of Korean Ginseng(Panax ginseng) and American ginseng(Panax quinquefolius), F$_1$ hybrids. Interspecies hybrids between Panax ginseng and Panax quinquefolius were examined morphological characteristics, rusty root incidence, and contents of effective ingredients such as ginsenosides. The summarized results are as follows. In Panax ginseng, rusty root incidence tended to increase with age of ginseng, but there was no difference in the incidence among ginseng ages and cultivation years in Panax quinquefolius and F$_1$ hybrid. The interspecies hybrid of panax ginseng and Panax quinquefolius flowered later than the Panax ginseng, but earlier than the Panax quinquefolius. As for the characteristics of ginseng root, Panax quinquefolius seedling was better than cv. Panax ginseng, as the former had longer and heavier seedling root than the latter. Ginsenosides of the hybrid F$_1$ showed intermediate value in amounts of Rb$_1$, Rb$_2$, Rc and Rd which were detected as in Panax gineng and Panax quinquefolius. The amount of Re of the hybrid was higher, but that of Rg$_1$ and Rg$_2$ in main and branch roots was lower compared with its parents. Rf was 0.14% and 0.20% in main and branch roots of Panax ginseng, respectively; however, no Rf was detected in Panax quinquefolius and in the hybrid F$_1$. This suggests there may be remarkable difference in Rf content among the ginseng species.

Differential Metabolomics Analysis of Ginseng (Panax ginseng) by Processing Time (가공시간에 따른 인삼의 대사체학 분석)

  • Choi, Moon-Young;Kim, Kyung-Min;Choi, Min-Suk;Heo, Yun-Seok;Lee, Hae-Na;Lee, Choong-Woo;Kwon, Sung-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Red ginseng is made of white ginseng through the steaming and drying procedure. In this process, the amounts of toxic elements of ginseng are decreased and those of effective components, ginsenosides are increased. In order to identify the components alteration of white ginseng by processing time, we applied HPLC-based metabolomics approach combined with the principal component analysis (PCA) multivariate analysis. White ginsengs were steamed at 0, 1, 2, 4, 8 and 16 h, respectively and followed by drying process at moderate temperature. Then the steamed ginsengs and the commercial red ginsengs were analyzed by HPLC. On the basis of HPLC results, PCA multivariate analysis was applied for evaluating the quality of red ginseng, which showed the processed ginsengs are grouped by processed time because less polar ginsenosides were increased in proportion as the steaming time was increased. The purchased red ginsengs were distributed in the range of $0{\sim}1$ hour steaming time. This pilot experiment suggests that HPLC-based metabolomics approach is able to allow the quality of herbal medicines to be controlled with a simple and economic method.

Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell

  • Park, Eun-Hwa;Kim, Young-Joo;Yamabe, Noriko;Park, Soon-Hye;Kim, Ho-Kyong;Jang, Hyuk-Jai;Kim, Ji Hoon;Cheon, Gab Jin;Ham, Jungyeob;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • Background: Research has been conducted with regard to the development of methods for improving the pharmaceutical effect of ginseng by conversion of ginsenosides, which are the major active components of ginseng, via high temperature or high-pressure processing. Methods: The present study sought to investigate the anticancer effect of heat-processed American ginseng (HAG) in human gastric cancer AGS cells with a focus on assessing the role of apoptosis as an important mechanistic element in its anticancer actions. Results and Conclusion: HAG significantly reduced the cancer cell proliferation, and the contents of ginsenosides Rb1 and Re were markedly decreased, whereas the peaks of less-polar ginsenosides [20(S,R)-Rg3, Rk1, and Rg5] were newly detected. Based on the activity-guided fractionation of HAG, ginsenoside 20(S)-Rg3 played a key role in inducing apoptosis in human gastric cancer AGS cells, and it was generated mainly from ginsenoside Rb1. Ginsenoside 20(S)-Rg3 induced apoptosis through activation of caspase-3, caspase-8, and caspase-9, as well as regulation of Bcl-2 and Bax expression. Taken together, these findings suggest that heat-processing serves as an increase in the antitumor activity of American ginseng in AGS cells, and ginsenoside 20(S)-Rg3, the active component produced by heat-processing, induces the activation of caspase-3, caspase-8, and caspase-9, which contributes to the apoptotic cell death.