• Title/Summary/Keyword: germination capacity

Search Result 87, Processing Time 0.035 seconds

Seed Germination, Plant Growth and Antioxidant Capacity of Limonium tetragonum under Different Salt Concentrations (염농도에 따른 갯질경(Limonium tetragonum) 종자의 발아와 식물체의 생장 및 항산화 활성)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;An, Sung-Hyun;Jeong, Han-Yong;Lee, Hyeon-Seok;Baek, Jung-Sun;Choi, Kyung-Jin;Lee, Geon-Hwi;Ra, Ji-Eun;Chung, Nam-Jin;Lee, Seung Jae;Yun, Song Joong
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • Limonium tetragonum is a halophyte grown naturally in the coastal region in South Korea. This study was conducted to investigate the effects of salt concentrations on seed germination, seedling growth, and antioxidant capacity of L. tetragonum. Seeds were collected from naturally grown plants of L. tetragonum and those at full maturity were used in this experiment. All experiments were performed at 0%, 0.5%, 1.0%, or 2.0% of salt concentrations. Seed germination rate was highest as 86% at $20^{\circ}C$ and followed as higher in order of $25^{\circ}C$, $30^{\circ}C$ and $15^{\circ}C$. The germination rate was about 80% at 0% or 0.5% of salt concentration, but it was very low at the salt concentrations higher than 1%. Growth of L. tetragonum seedlings showed no difference in Hoagland solution containing NaCl in the range of 0% to 1.0% and seedlings survived at 2.0% of NaCl concentration. As the salt concentration increased, the content of $Na^+$ in the shoot increased, but that of $K^+$, $Ca^{{+}{+}}$, or $Mg^{{+}{+}}$ decreased. The antioxidant activity and the content of total polyphenol and total flavonoid in the shoot were similar at 0% and 0.5% of NaCl and were highest at 2.0% of NaCl concentration. In conclusion, performance of seed germination and plant growth of L. tetragonum was highest at 0% and 0.5% of NaCl concentration, and showed no difference in antioxidant activity, total polyphenol contents, and total flavonoid contents at the same salt concentrations.

Characteristics of Pellet Seed on Germination and Emergence in Onion(Allium cepa L.) (양파 Pellet 종자의 발아 및 포장출아 특성)

  • 이성춘;박상욱
    • Korean Journal of Plant Resources
    • /
    • v.13 no.1
    • /
    • pp.41-47
    • /
    • 2000
  • This study was conducted to evaluate development of seed pellet technique such as pellet polymer search, the shape formation and hardness, the germination and emergence rate of the pellet seeds for labor-saving and reducing production cost in onion(Allium cepa L.) cultivation. The pellet seeds shape formation was good such as kaolin, clay, ash, and gypsum, and clay was good shape formation but surface of pellet seed was cracked during the drying. PG(pearlite + gypsum) as pellet material and PVA as binder were the best among the material in consideration with shape and hardness together. The hardness of the pellet seeds was affected by polymers, the kinds and concentration of binders, and that degree was large at polymer. The high hardness polymers were gypsum and coal ash, but burned lime was the lowest hardness among the pellet material. The germination(GP) and emergence percentage(EP) of pellet seed with PG in vitro were the highest among the material, and that was 93.6, 91.8%, respectively. The EP of pellet seed with PG at 20, $25^{\circ}C$ were 91.3, 92.0%, respectively, The EP of pellet seed were over the 91%, and those did not show difference with field moisture capacity , and that of 5 and 6mm size seed were the highest as 92%, respectively. and other size seeds showed over 90%, too. The EP of pellet seed with PG was decreasing as increasing the sowing depth, and that of at 10mm sowing depth was the highest as 92.7%. The time to 50% emergence of that under 70% field moisture capacity was 158h, and that was delayed at 20h compare to control seed.

  • PDF

Copper and Zinc Uptake Capacity of a Sorghum-Sudangrass Hybrid Selected for in situ Phytoremediation of Soils Polluted by Heavy Metals (식물정화를 위한 중금속 내성 작물의 선발과 수수-수단그라스 교잡종의 구리와 아연 흡수능력)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1501-1511
    • /
    • 2015
  • As essential trace elements, copper and zinc play important roles in many physiological events in plants. In excess, however, these elements can limit plant growth. This study selected a heavy metal-tolerant plant by analyzing seed germination and biomass of alfalfa (Medicago sativa), canola (Brassica campestris subsp. napus var. nippo-oleifera), Chinese corn (Setaria italica), and a sorghum-sudangrass hybrid (Sorghum bicolor ${\times}$ S. sudanense), and determined heavy metal uptake capacity by analyzing biomass, chlorophyll a fluorescence, and heavy metal contents under high external copper or zinc levels. The seed germination rate and biomass of the sorghum-sudangrass hybrid were higher under copper or zinc stress compared to the other three plants. The plant biomass and photosynthetic pigment contents of the sorghum-sudangrass hybrid seedlings were less vulnerable under low levels of heavy metals (${\leq}50ppm$ copper or ${\leq}400ppm$ zinc). The maximum quantum yield of PSII ($F_v/F_m$) and the maximum primary yield of PSII ($F_v/F_o$) decreased with increasing copper or zinc levels. Under high copper levels, the decline in $F_v/F_m$ was caused only by the decline in $F_m$, and was accompanied by an increase in non-photochemical quenching (NPQ). The $F_v/F_m$ declined under high levels of zinc due to both a decrease in the maximum fluorescence ($F_m$) and an increase in the initial fluorescence ($F_o$), and this was accompanied by a marked decrease in photochemical quenching (qP), but not by an increase in NPQ. Accumulations of copper and zinc were found in both aboveand below-ground parts of plants, but were greater in the below-ground parts. The uptake capacity of the sorghum-sudangrass hybrid for copper and zinc reached 4459.1 mg/kg under 400 ppm copper and 9028.5 mg/kg under 1600 ppm zinc. Our results indicate that the sorghum-sudangrass hybrid contributes to the in situ phytoremediation of copper or zinc polluted soils due to its high biomass yield.

Functional Properties of Germinated Whole Soy Flour (발아콩분말의 기능적 특성)

  • Lee, Ho-Suk;Eom, Kwon-Yong;Choi, Hee-Sook;Kim, Dong-Hee;Yoo, Sang-Ho;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.483-487
    • /
    • 2006
  • In this study we investigated the effect of soybean germination on protein solubility, water and oil absorption and foaming and emulsion Properties. The soybeans were at germinated at $20^{\circ}C$ for 12 and 24 hr and then ground fine enough to Pass through a 60 mesh sieve. The germinated whole soy flour (GWSF) was relatively low in oil absorption capacity and protein solubility at pH 2 and 10 and high in water absorption capacity compared to ungerminated soy flour. Relatively low foaming capacities were measured for GWSF at pH 2 and 12 while the stabilities of GWSF were higher than that of ungerminated soy flour at pH 2-12 and setting time of 30-120 min. Emulsion capacity and stability were improved by germination at pH 10-12.

Effects of Low Dose Gamma Radiation and Seed Moisture Content on Germination and Early Growth of Vegetable Crops (저선량 방사선 조사 시 종자수분함량이 채소류의 발아와 초기생장에 미치는 영향)

  • Baek, Myung-Hwa;Lee, Young-Keun;Lee, Young-Bok;Yang, Seung-Gyun;Kim, Jae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.215-219
    • /
    • 2003
  • To investigate the effects of low dose gamma radiation and seed moisture content (SMC) on germination and early growth of vegetable crops, seeds of chinese cabbage (Brassica campestris L.), radish (Raphanus sativus L.), red pepper (Capcicum annuum L.), figleaf gourd (Cucurbita ficifolia Bouche) and bottle gourd (Lagenaria siceraria Standl), with different SMC were irradiated with different doses ($0{\sim}20\;Gy$) of gamma-ray by irradiator ($^{60}Co$, ca.150 TBq of capacity, AECL). Vegetable crops in which low dose gamma radiation was irradiated in seeds with different moisture content showed different response in seed germination and early growth to low dose gamma radiation. The germination rate of chinese cabbage, figleaf ground and bottle gourd irradiated with $2{\sim}8\;Gy$ showed interactive responses against relative SMC. Also, significant interactions occurred for the early growth between those factors. The stimulating effects of gamma radiation were more pronounced for hydrated seeds of chinese cabbage, radish, figleaf gourd and bottle gourd showing prominent responses with $2{\sim}10\;Gy$ irradiation, particularly for chinese cabbage and bottle gourd. These results suggest that radiation may promote germination and early growth of vegetable crops through interaction with SMC.

Change of Quality and Physicochemical Characteristics of Mung-bean Flours with Germination and Roasting Condition (발아 및 볶음조건별 녹두가루의 품질 및 이화학 특성 변화)

  • Kim, Hyun-Joo;Lee, Ji Hae;Lee, Byong Won;Lee, Yu Young;Lee, Byoung Kyu;Woo, Koan Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.1
    • /
    • pp.149-159
    • /
    • 2018
  • The change of quality and physicochemical characteristics of mung-bean flours after germination and roasting treatment were evaluated. The moisture content of the roasted mung-bean flours decreased significantly according to the roasting temperatures and times, and the crude ash, protein and fat contents increased. The lightness of the roasted mung-bean flours significantly decreased, and the redness and yellowness increased. The water binding capacity of the roasted mung-bean flours without and with germination were 151.71 and 192.77% at $240^{\circ}C$ for 20 min, respectively. The water solubility index and swelling power decreased with an increase in roasting temperatures and times. The phenolic compounds and radical scavenging activity of the roasted mung-bean flours increased with an increase in the roasting temperatures and times. The total polyphenol contents of the roasted mung-bean flours without and with germination were 4.81~7.71 and 4.22~5.63 mg GAE/g, and the total flavonoid contents were 2.46~3.05 and 2.45~2.87 mg CE/g, respectively. The DPPH radical scavenging activity of the roasted mung-bean flours, without and with germination, were 106.83~376.08 and 174.41~346.70 mg TE/100 g, and the ABTS radical scavenging activity was 251.67~534.31 and 274.39~430.02 mg TE/100 g, respectively. As a result, it is necessary to set quality standards for each application considering the quality and antioxidant properties of the roasted mung-bean flours.

A Study on the Germination of Apple Rootstock Seed, Malus sieboldii (사과 대목 종자의 발아에 관한 연구)

  • Cheong, Sam Taek;Kim, Ik Hong;Jeun, Sang Hang;Kim, Min
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.41-46
    • /
    • 1989
  • The seeds of Malus sieboldii were collected in late fall of 1988 and stored in cold stratification condition for 15 weeks. Growth regulators such as $GA_3$, BA and ABA were treated to the seed to know germination capacity and seedling growth. The results were as follows. 1) Higher germination was achieved in $GA_3$ and BA plots, But ABA treatment showed lower germination percentage and physiological dwarf and also induced to the secondary dormancy condition in partly. 2) Average length of time for germination was delayed over 2 days in ABA plot when comparing with the other plots. 3) Average length of plumule and radicle also was inhibited by ABA treatment. This means lower seedling vigor. 4) Fresh and dry weight of the seeding were higher in BA plot while ABA plot was lower and undesirable seedling was produced. From above mentioned results, it is believed that ABA treatment to the seed induced the secondary dormancy and physiological dwarf pattern. Therefore, utilization of BA can be produced the normal seedling, the authors believed.

  • PDF

Effects of Soil Organic Amendment as Plant Growing Media Component for Restoration of Planting Ground (식재기반 복원을 위한 유기질계 토양개량재의 효용성)

  • Ju, Jin-Hee;In, Da-Young;Kim, Won-Tae;Yoon, Young-Han;Choi, Eun-Young
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1363-1370
    • /
    • 2015
  • This study was aimed to determine effects of soil organic amendment as plant growing media component on restoration of planting ground. The changes of soil physical and chemical properties and germination and growth of kentucky bluegrass (Poa pratensis L.) were investigated. For treatments, soil was excavated at depth of 0-50 cm (referred as $S_1$) and at depth of 50-100 cm (referred as $S_2$). Then the half amount of $S_1$ soil was mixed with the soil organic amendment (coir dust 40% (v/v), bottom ash 25%, leaf mold 25%, vermiculite 5%, carbonized rice hull 5%) at a rate of 6% (v/v) (referred as $S_1CC$) and also the half amount of $S_2$ soil was mixed with the soil organic amendment at a rate of 6% (v/v) (referred as $S_2CC$) on pot in a 16 cm diameter and 14 cm height. The experiment was replicated 3 times with 3 pots per replication in randomized block design, and 100 seeds were planted per pot. In results, there was no significant difference in soil pH among the treatments with a slight decrease in soil hydraulic conductivity. However, in the $S_1CC$ treatment, positive increases in soil chemical properties, including electrical conductivity, organic matter, phosphoric acid, total nitrogen, exchangeable cation, and cation exchange capacity. Also, the germination rate, plant height, and number of leaves were higher in the $S_1CC$ treatment than those in other treatments. These results suggest that the addition of organic amendment to the soil at depth of 0-50 cm might be proper for restoring planting ground.

Low Temperature Storage of Rough Rice Using Cold-Air in Winter(I) - Storage Characteristics after Rough Rice Cooling - (겨울철 냉기를 이용한 벼의 저온저장(I) - 벼 냉각 후 저장특성 -)

  • Lee J. S.;Han C. S.;Ham T. M.;Yon K. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.155-160
    • /
    • 2005
  • The objective of this research was to establish a domestically available cooling storage technique by cold-air in winter, using winter cool air ventilation fur determining rough rice cooling method in the storage and dry bin. The rough rice storage characteristics of two test conditions, winter cool-air ventilation storage and ambient temperature storage, were evaluated from January to July 2001, using a storage and dry bin of 300-ton capacity. Results of this research are as follows: Grain temperature was from $-5.1\~-8.5^{\circ}C$ after winter cool-air ventilation, and grain initial temperature for ambient temperature bin storage was $0.3\~1.9^{\circ}C$. Moisture content of rough rice decreased from $0.28\;to\;0.93\%$ and from $1.53\;to\;1.92\%$ to compare with original moisture contents for winter cool-air ventilation, and for ambient temperature bin storage, respectively. Broken ratio of brown rice from winter cool-air ventilation bin increased from $0.16\;to\; 0.92\%$, and brown rice broken ratio was from $2.24\;to\;2.86\%$ for ambient temperature bin storage to compare with initial broken ratio. Hardness of stored rice increased along storage period increase in alt storage methods, and cooling bin storage increased rice hardness of 0.271kgf: this increasing was lower then the other methods from 0.059 to 2.239kgf. Germination rates were decreased approximately 9.03, 3.14 and $3.20\%$ for upper, middle, and bottom of ventilating winter air bin, respectively, and germination rates of 2.70, 3.47 and $4.14\%$ were approximately decreased for upper, middle, and bottom parts of ambient temperature bin storage, respectively.

Habitat Environment and Cutting, Seed Propagation of Rare Plant Rhododendron micranthum Turcz (희귀식물 꼬리진달래의 자생지 생육환경 및 삽목, 종자번식)

  • Kim, Nam Young;Bae, Kee Hwa;Kim, Young Seol;Lee, Hak Bong;Park, Wan Geun
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • The habitats characteristics of Rhododendron micranthum Turcz. were investigated to compile basic data for conservation and restoration. Natural habitats were located at altitudes of 100-500 m with inclinations of $10-35^{\circ}$. Rhododendron micranthum population was classified into Pinus densiflora dominant population. In the study sites, soil organic matter, total nitrogen, available phosphate, exchangeable potassium, exchangeable sodium, exchangeable calcium, exchangeable magnesium, cation exchange capacity and soil pH were 4.10-8.64%, 0.18-0.46%, 8.69-26.70 $mgkg^{-1}$, 0.10-0.23 $cmol^+kg^{-1}$, 0.06-0.10 $cmol^+kg^{-1}$, 0.85-4.10 $cmol^+kg^{-1}$, 0.24-0.64 $cmol^+kg^{-1}$, 12.76-20.90 $cmol^+kg^{-1}$, 4.34-5.15. Rooting rate is too low, cutting propagation, breeding methods are not good. Also, this study was investigated seed germination of R. micranthum depends on soaking treatment. R. micranthum was soaked with tap water for four days, the average values of germination day were represented of 70%/1 week.