• Title/Summary/Keyword: geothermal water

Search Result 338, Processing Time 0.02 seconds

Applicability of Fuzzy Logic Based Data Integration to Geothermal Potential Mapping in Southern Gyeongsang Basin, Korea (경상분지 남부지역의 지열 부존 잠재력 평가를 위한 퍼지기반 자료통합의 적용성 연구)

  • Park, Maeng-Eon;Baek, Seung-Gyun;Sung, Kyu-Youl
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.307-318
    • /
    • 2007
  • The occurrence of geothermal water has high correlates highly with fossil geothermal system. A fuzzy logic based data integration is applied for geothermal potential mapping in the Southern Gyeongsang Basin which is distributed in the regional fossil geothermal system. Several data sets are related with the origin and distribution of fossil geothermal system, such as the geological map, the density of lineaments, the aerial survey map of magnetic intensity, the map of hydrothermal alteration, the distribution density of hydrothermal mines, which were collected as thematic maps for the integration. Fuzzy membership functions for all thematic maps were compared to the locations of the spa hot springs, which were used as ground-truth control points. After integrating all thematic maps, the results of gamma operator (${\gamma}=0.1$) was showed the highest success rate, and new geothermal potential zone is prospected in some area.

A Study on the Improvement of the Water Source Energy Distribution Regulation for High Efficient Data Center Cooling System in Korea (데이터센터 냉방시스템 고효율화를 위한 국내 수열에너지 보급 제도 개선에 관한 연구)

  • Cho, Yong;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2021
  • In this study, the current regulation of the water source energy, one of the renewable energy, was analyzed, and the improvement plan for the high efficient data center cooling system was suggested. In the improvement plan, the design and construction guidelines of the water source energy system permit to adopt the cooling and heating system with or without heat pump. In addition, it should also include the system operated in the cooling mode only all year-round. The domestic test standards to consider the water source operating conditions should be developed. Especially, it is highly recommended that the test standards to include the system with forced cooling and free cooling modes related with the enhanced data center cooling system adopting the water source energy.

Magnetotelluric survey applied to geothermal exploration: An example at Seokmo Island, Korea (자기지전류법을 이용한 석모도에서의 지열자원 탐사)

  • Lee, Tae-Jong;Han, Nu-Ree;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • A magnetotelluric (MT) survey has been performed to delineate deeply extended fracture systems at the geothermal field in Seokmo Island, Korea. To assist interpretation of the MT data, geological surveying and well logging of existing wells were also performed. The surface geology of the island shows Cretaceous and Jurassic granite in the north and Precambrian schist in the south. The geothermal regime has been found along the boundary between the schist and Cretaceous granite. Because of the deep circulation along the fracture system, geothermal gradient of the target area exceeds $45^{\circ}C/km$, which is much higher than the average geothermal gradient in Korea. 2D and 3D inversions of MT data clearly showed a very conductive anomaly, which is interpreted as a fracture system bearing saline water that extends at least down to 1.5 km depth and is inclined eastwards. After drilling down to the depth of 1280 m, more than 4000 tons/day of geothermal water overflowed with temperature higher than $70^{\circ}C$. This water showed very similar chemical composition and temperature to those from another existing well, so that they can be considered to have the same origin; i.e. from the same fracture system. A new geothermal project for combined heat and power generation was launched in 2009 in Seokmo Island, based on the survey. Additional geophysical investigations including MT surveys to cover a wider area, seismic reflection surveys, borehole surveys, and well logging of more than 20 existing boreholes will be conducted.

A study of geothermal heat dump for solar collectors overheat protection (태양열 집열관 과열방지를 위한 지중열교환기 연구)

  • Hwang, Hyun-Chang;Chi, Ri-Guang;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.616-622
    • /
    • 2016
  • The heating load using solar hot water is lower in summer than in the other seasons. This decreased heating load leads to the overheating solar collectors and related components. To prevent overheating of the solar collectors, air cooling and shading shields were used. On the other hand, it requires additional mechanical components, and reduces the system reliability. The geothermal heat dump system to release the high temperature heat (over $150^{\circ}C$) transferred from the heat pipe solar collectors was investigated in the present study. Research on the heat dump to cool the solar collector is rare. Therefore, the present study was carried out to collect possible data of a geothermal heat dump to cool the solar collector. A helical type geothermal heat exchanger was buried at a 1.2m depth. Experimentally and numerically, the geothermal heat dump was investigated in terms of the effects of parameters, such as the quantity of solar radiation, aperture area of the collector and the mass flow rate. A pipe length of 50m on the geothermal heat exchanger was suitable with a 0.33 kg/s flow rate. The water reservoir was a possible co-operation solution linked to the geothermal heat exchanger.

Characterization of Area Installing Combined Geothermal Systems : Hydrogeological Properties of Aquifer (복합지열시스템에 대한 부지특성화: 대수층의 수리지질학적 특성)

  • Mok, Jong-Koo;Park, Yu-Chul;Park, Youngyun;Kim, Seung-Kyum;Oh, Jeong-Seok;Seonwoo, Eun-Mi
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.293-304
    • /
    • 2017
  • This study was performed in order to hydrogeological analysis of aquifer, which is a necessary part for evaluating the efficiency of the combined well and open-closed loops geothermal (CWG) systems. CWG systems have been proposed for the effective utilization of geothermal energy by combining open loop geothermal systems and closed loop geothermal systems. Small aperture CWG systems and large aperture CWG systems were installed at a green house land with water curtain facilities in Chungju City. Aquifer tests include pumping tests and step-drawdown tests were conducted to analyse hydrogeological characteristics of aquifer in the study area. The transmissivity was estimated in the range of $13.49{\sim}58.99cm^2/sec$, and the storativity was estimated in the range of $1.13{\times}10^{-5}{\sim}5.20{\times}10^{-3}$. The geochemical analysis showed $Ca^{2+}$ ion and ${HCO_3}^-$ ion were dominant in groundwater. The Langelier Saturation Index and the Ryznar Stability Index showed low scaling potential of groundwater. In the analysis of vertical water temperature change, the geothermal gradient was estimated as $2.1^{\circ}C/100m$, which indicated the aquifer was enough for geothermal systems. In conclusion, groundwater is rich, can stably use geothermal heat, and it is less likely to cause deterioration of thermal energy efficiency by precipitation of carbonate minerals in study area. Therefore, the study area is suitable for installation of the combined geothermal system.

The Effects of Hot Water Supply on Energy Consumption for Floor Radiant Heating System (바닥복사 난방시스템의 공급온수특성에 따른 에너지 소비특성 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.32-38
    • /
    • 2019
  • In this study, the effect of hot water supply flow rates on energy consumption for radiant floor heating system in apartment were researched by computer simulation. The parametric study of different hot water supply flow rates was done with regard to energy performance and control characteristics, respectively. Also the effect of different hot water supply flow rates on the hot water supply temperatures is studied. As a result, energy consumption were reduced but the response time is increased by reducing the supply flow rate. And energy consumption can be saved by adjusting the hot water supply temperatures with different supply flow rates.

The Effects of Operational Conditions of Cooling Water System on Energy Consumption for Central Cooling System (냉각수 계통의 운전변수가 중앙냉방시스템의 에너지소비량에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.8-13
    • /
    • 2017
  • The effects of operational conditions of cooling water system on energy consumption for central cooling system are researched by using TRNSYS program. Cooling tower water pump flow rate, cooling tower fan flow rate, and condenser water temperature with various dry-bulb and wet-bulb temperatures are varied and their effects on total and component power consumption are studied. If the fan maximum flow rates of cooling tower is decreased, cooling tower fan and total power consumptions are increased. If the cooling tower water pump maximum flow rates is decreased, chiller and total power consumptions are increased. If condenser water set-point temperature is increased, chiller power consumption is increased and cooling tower fan power consumption is decreased, respectively.

A Study on Heating Characteristics of Ground Source Heat Pump with Variation of Heat Exchange Methods (열교환방식에 따른 지열히트펌프의 난방특성에 관한 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Park, Cha-Sik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.9-15
    • /
    • 2012
  • The objective of this study is to investigate the influence on the heating performance for a water-to-water 10RT ground source heat pump by using the water switching and refrigerant switching method. The test of water-to-water ground source heat pump was measured by varying the compressor speed, load side inlet temperature, and ground heat source side temperature. The heating capacity and COP of the heat pump increased with increasing ground heat source temperature. As a result, compared to a refrigerant switching method, the water switching method with counter flow improves the heating capacity and COP by approximately 5% in average, respectively.

A Study on Application of Seasonal Thermal Storage System in the Alluvial Aquifer Area (충적대수층 지역에서의 계간축열 지열냉난방시스템 적용 연구)

  • Park, Sungmin;Hwang, Kisup;Mon, Jongphil;Min, Dongmin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • In this paper, we designed a seasonal geothermal storage system and studied the applicability in the alluvial aquifer. We conducted a basic survey to apply this system to greenhouses actually operated in the Geum river basin alluvial aquifer. After choosing a potential area through electrical resistivity survey, the system parameters were set using drilling survey and pumping test result. We installed a system based on the factors, and operated for about 9 months. As a result, high temperature water(injection temperature $30^{\circ}C$) was stored at 22.5 Mcal ($1,609m^3$) for 3 months in cooling operation and 125 Mcal ($16,960m^3$) of low temperature water (injection temperature $7^{\circ}C$) were stored for 6 months in the remaining heating operation.

Simulation of Open-Loop Borehole Heat Exchanger System using Sand Tank Experiment and Numerical Model (토조 및 수치모형을 이용한 개방형 지중 열교환 시스템 모의)

  • Lee, Seong-Sun;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.489-492
    • /
    • 2007
  • Understanding the thermohydraulic processes in the aquifer is necessary for a proper design of the aquifer thermal energy utilization system under given conditions. Experimental and numerical test were accomplished to evaluate the relationship between the geothermal heat exchanger operation and hydrogeological conditions in the open-loop geothermal system. Sand tank experiments were designed to investigate the open-loop geothermal system. Water injection and extract ion system as open-loop borehole heat exchanger was applied to observe the temperature changes in time at injection well, extraction well and ambient groundwater. The thermohydraulic transfer for heat storage was simulated using FEFLOW for two cases of extraction and injection phase operation in sand tank model. As one case, the movement of the thermal plume was simulated with variable locations of injection and extraction well. As another case, the simulation was performed with fixed location of injection and extraction well. The simulation and experimental results showed that the temperature distribution depends highly on the injected water temperature and the length of injection time and the groundwater flow and pumping rate sensitively affect the heat transfer.

  • PDF