• Title/Summary/Keyword: geothermal system

Search Result 569, Processing Time 0.027 seconds

Development of High Peformance Geothermal heatexchanger (고성능저가형 지중열교환기 개발연구)

  • An, Hyung-Jun;Baek, Sung-Kwon;Im, Sung-Kyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.470-473
    • /
    • 2007
  • Geothermal heat exchanger(GHEX) is a major component of Geothermal heat pump system(GSHPs). In Common, We use the vertical type GHEX in Korea. But vertical type GHEX needs a high cost for installation, because of drilling the hole which has 200m depth at max. So, We suggest the use of horizontal type GHEX. When we construct buildins, We excavate the ground and we can install the horizontal type GHEX at the excavated underground. It's very cheap and convenient method compare to vertical type GHEX installation. This study is peformed to estimate the peformance of horizontal type GHEX and to analyze effects of heat exchanger types and undergroundwater. As the result, slinky type GHEX has a 66% efficiency compare to vertical type GHEX and mat type has a 201% efficiency at the undergroundwater zone.

  • PDF

Experimental Study for Horizontal Geothermal Heat Pump Heating Performance Analysis (수평형 지열 히트펌프 난방 성능 분석을 위한 실험적 연구)

  • Ihm, Pyeong chan;Cho, Sung woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.2
    • /
    • pp.7-12
    • /
    • 2016
  • This study have an objective to suggest basic data and measured result of heating performance on water-water type horizontal geothermal heat pump which is based on heating and cooling load calculation result of small residential house. The average temperature during measured periods is $9.4^{\circ}C$ on primary EWT and is $7.6^{\circ}C$ on primary LWT. The temperature difference shows $1.8^{\circ}C$ as average temperature. Because the average outdoor temperature of peak is lager than on December and than on January, the temperature difference between EWT and LWT is bigger that on January than that on December. The system COP is 3.62.

EGS field case studies - UK Rosemanowes and Australian Cooper Basin projects (EGS 실증연구사례 - 영국 Rosemanowes 프로젝트와 호주 Cooper Basin 프로젝트)

  • Min, Ki-Bok;Xie, Linmao;Kim, Hanna;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.21-31
    • /
    • 2014
  • In order to generate electricity from geothermal energy for non-volcanic region, the concept of enhanced geothermal system (EGS) is introduced which forms an artificial reservoir by injecting high pressure fluid to 5 km deep and circulating geothermal fluid through the reservoir. Demonstration studies have been conducted in various countries and regions for determining the feasibility of EGS. In this technical note, experiences, errors, and implications of EGS demonstration projects in UK Rosemanowes and Australia Cooper Basin which have been carried out since 2002 are introduced to be used for the EGS demonstration project in Korea.

Study on longitudinal variation of subcooling with high elevated liquid line in a modular heat pump system (모듈형 동시냉난방 열펌프의 장배관/고낙차에 따른 액선 과냉도 변화에 대한 연구)

  • Shin, Kwang-Ho;Kim, Min-Sung;Baik, Young-Jin;Ra, Ho-Sang;Park, Sung-Ryung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1255-1260
    • /
    • 2008
  • This study is simulation of high elevated liquid line of a modular heat pump system to observe longitudinal subcooling variation. In a high elevated tube, subcooled refrigerant(R410A) through a condenser changes its states by heat transfer with surrounding air and by pressure drop from elevation. In this study, the liquid line was simulated through correlations of heat transfer and pressure drop for the variation from single-phase into two-phase flow. Pressure drop, heat transfer rate and vapor quality were calculated as key parameters. Two-phase turning heights and variations of the key parameters were confirmed from the simulation. As a result, high elevation of liquid line has great influence on upward flow, which requires additional equipment to compensate the variation.

  • PDF

Investigation of ground thermal characteristics for performance analysis of borehole heat exchanger (지중 열교환기 성능 분석을 위한 지반 열물성 조사)

  • Shim, Byoung-Ohan;Song, Yoon-Ho;Kim, Hyoung-Chan;Cho, Byong-Wook;Park, Deok-Won;Im, Do-Hyung;Lee, Young-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.587-590
    • /
    • 2005
  • A detailed geothermal characteristics survey with numerical simulations of the heat transfer in a site for ground source heat pump system is necessary for deploying a shallow geothermal utilization system. Density, specific heat, thermal diffusivity, and thermal conductivity are measured on 91 core samples from a 300 m deep borehole in KIGAM(Korea Institute of Geoscience and Mineral Resources). The heat flow is estimated from the thermal gradient and average thermal conductivity and the correlation between fracture system and hydraulic conductivity is analyzed. From the obtained ground information of the study site the performance of the ground heat pump system can be analyzed with some detailed numerical simulations for seasonal heat pump operation skill and optimal system design techniques.

  • PDF

Research on the heating performance of SCW heat pump system for residential house (주거용 건물의 지하수 이용 지열 히트펌프 시스템의 난방성능 특성에 관한 연구)

  • Kim, Ju-Hwa;Kim, Ju-Young;Hong, Won-Hwa;Ahn, Chang-Hwan
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.431-435
    • /
    • 2008
  • Geothermal heat pump system using standing column wells as their ground heat exchanger can be used as a highly efficient source of heating and cooling in massive buildings. But there is no case of a small scale residential house. So this study estimated heating coefficient of performance(COP) of geothermal heat pump system using standing column well type which is excellent in heat recovery in the residential house. As a result of analysis, The COP of heat pump is over average 6 and is excellent. And in consequence of making a comparative study according to the bleeding, the cop is higher in the case of bleeding. Therefore, bleeding affects the performance of the system. This study has shown performance result that stands on actual data. Therefore, this study provides ground data that needs when a low capacity of system designs for a residence with confidence elevation.

  • PDF

Analysis of Economic Feasibility and Reductions of Carbon Dioxide Emission of Geothermal Heating and Cooling System using Groundwater (지하수를 이용한 지열 냉난방시스템의 경제성 및 이산화탄소 저감량 분석)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol;Cha, Jang-Hwan
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.599-612
    • /
    • 2015
  • The development of renewable energy technologies that can replace fossil fuels is environmentally important; however, such technologies must be economically feasible. Economic analyses are important for assessing new projects such as geothermal heating-cooling systems, given their large initial costs. This study analyzed the economics and carbon dioxide emissions of: a SCW (standing column well), a vertical closed loop boiler, a gas boiler, and an oil boiler. Life cycle cost analysis showed that the SCW geothermal heating-cooling system had the highest economic feasibility, as it had the highest cost saving and also the lowest carbon dioxide emissions. Overall, it appears that geothermal systems can save money when applied to large-scale controlled agriculture complexes and reclaimed land.

Utilizing public data to promote renewable energy supply -Focusing on geothermal energy related data- (신재생에너지 보급 활성화를 위한 공공데이터 활용 방안 -지열에너지 연관 데이터를 중심으로-)

  • Gim, Yu-Seung;Ryu, Hyung-Kyou;Choi, Seung-Hyuck
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.253-262
    • /
    • 2018
  • Recently, the energy industry is implementing renewable energy supply policy to reduce energy consumption. The purpose of this study is to build a database that can help promote the supply of geothermal energy system to prepare for the increase of renewable energy demand and to develop a method to evaluate the possibility of geothermal energy system installation by using database information. The data used in the study was reliable using open data provided by national agencies. We obtained information necessary for the possibility of geothermal energy system installation, constructed a dedicated database, and studied the method of calculating the geothermal well capacity by using the database information. In the future, this study will establish a local environmental evaluation standard and add information on other renewable energy to contribute to the activation of renewable energy supply.

A Study on the Yearly Measurement and Numerical Analysis of Underground Temperature (년간 지중온도의 실측 및 수치해석에 관한 연구)

  • Shin, Y.H.;Tanshen, Md. Riyad;Chung, H.C.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.30-35
    • /
    • 2012
  • The geothermal energy is one of the renewable energy sources which can contribute in accomplishing a vision and goal of the national plan on energy for a government suggestion. Especially, the geothermal energy is evaluated as the nearly unlimited resources. The yearly underground temperature distribution by depth is very important to the design of air-conditioning system which uses a geothermal energy. Furthermore, there has no data for comparisons to numerical analysis. In this study, the yearly underground temperature is measured under the depth of 2 m in Tongyeong, and these data are compared with numerical analysis results for checking the accuracy. The results showed that the experimental temperature and numerical results had a good agreements and these results will be utilized to predict a performance of air-conditioning system for using a geothermal energy.

Heating and Cooling Performance Characteristics of a Water-to-Water Heat Pump with R452B Refrigerant (R452B 냉매 적용 물대물 지열원 히트펌프 유닛의 냉난방 운전 성능 특성)

  • Choi, Youn Sung;Kang, Hee Jeong;Kim, Eun Oh
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.14-20
    • /
    • 2017
  • Refrigerant having high global warming potentials will be phased out due to environmental protection issues. R410A has been widely used in geothermal heat pump. However, it has a little high GWP by 2088 value. One of the recommended substitute for R410A refrigerant is R452B which having a GWP by 698 value. In this paper, the heating and cooling performance of the water-to-water geothermal heat pump unit with R452B was experimentally investigated. The performance of the heat pump adopting R452B was also compared with the system applying R410A. The heating and cooling capacity of R452B heat pump system showed a slightly lower values within 2% comparing with R410A system. However, the R452B system's coefficient of performance was enhanced by 5.2% and 13.7% at heating and cooling mode, respectively.