• Title/Summary/Keyword: geothermal source heat pump

Search Result 183, Processing Time 0.032 seconds

A Study on the Measurement of Thermal conductivity of Vertical Borehole heat Exchanger (수직형 지중열교환기 열전도도 측정기술에 관한 연구)

  • Kim, Ji-Young;Lee, Euy-Joon;Chang, Ki-Chang;Kang, Eun-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.39-44
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic response test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless P/T probe for a hi-speed k determination was introduced in this paper. This technique using a wireless P/T probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. In order to verify the new technique for the determination of ground thermal conductivity, ground thermal conductivity k that calculated from the measured temperature data using a wireless P/T probe was compared with one obtained from conventional hydraulic TRT. When comparing the average k of two methods, the relative error was approximately 10%. As a result, the electronic TRT can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of sites.

  • PDF

Study on construction method of horizontal ground heat pump system using the building structure (건물구조체를 이용한 수평형 지열시스템의 시공법에 관한 연구)

  • Chae, Ho-Byung;Nam, Yujin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.139-140
    • /
    • 2013
  • Ground source heat pump systems can achieve the energy saving of building and reduce CO2 emission by utilizing stable ground temperature. However, they have many barriers such as high cost of installation, incompletion of design tool, lack of recognition as heating and cooling systems. In order to solve the problems, the building integrated geothermal system (BIGS) developed by several researches which use building foundation as a heat exchanger. In order to establish the optimum design tool of BIGS with the horizontal heat exchanger, the prediction method of ground heat exchange rate developed with numerical simulation model. In this study, the economic analysis for BIGS was conducted based on simulation results and the optimal design method was suggested. As a result, it was found that the case of 32 A, piping space 0.3 m, piping deep 0.5 m and flow rate 9.52 L/min was the best case as 50.1 W/m2 of heat exchange rate. In this case the initial cost was reduced to 115 million won.

  • PDF

A Review on Potential Effects of Installation and Operation of Ground Source Heat Pumps on Soil and Groundwater Environment (지열히트펌프시스템의 설치 및 운영이 토양.지하수에 미치는 영향에 대한 고찰)

  • Jo, Yun-Ju;Lee, Jin-Yong;Lim, Soo-Young;Hong, Gyeong-Pyo
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.22-31
    • /
    • 2009
  • Recently use of renewable energies such as geothermal energy for space heating and cooling is increasing in Korea due to energy crisis and global warming. Ground source heat pump (GSHP) is known as one of the most environment-friendly HVAC (heating, ventilation and air-conditioning) systems in the world. However, some potential effects caused installation and operation of the GSHP systems on soil and groundwater environment are reported. The potential effects are closely related with inappropriate installation, operation and closure of the GSHP systems. In this paper, possible effects of the GSHPs on soil and groundwater environments are reviewed.

Feasibility Study on Leveling Method of Electric Power Load by Applying Thermal Storage Air Conditioning System (축열식 열원시스템 적용에 의한 전력부하 평준화의 경제성 검토)

  • Lee, Chulgoo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • Reducing global warming potential has become important, and as one of those methods for reducing it, economic evaluation by applying ice thermal storage air conditioning system was performed. The floor area and height of the subject building was assumed $5,000m^2$ and 20 m. Absorption chillerheater system and air source heat pump system was used for comparing to the subject system, and payback period method was used to perform economic evaluation. Although the running cost of ice thermal storage system is reduced compared to two systems, the ratio is not significant compared to the increase of initial construction expenses, and payback period was calculated to be about 7.7 and 79.3 years. However, the heat storage system should be approached from the viewpoint of long term rather than the economic standard in the present standard.

ISO performance data based commissioning technique for GSHP system (ISO 성능데이터를 이용한 지열히트펌프 시스템의 성능 확인 커미셔닝 기술)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Chang, Ki-Chang;Lee, Euy-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. However, the system reliability has been key issues and barriers to insure a better system performance as designed originally in ISO (international standard organization) standard. This paper introduces a systematic method to verify its intended design target so called as ISO performance data based commissioning technology for a water to air GSHP system. The commissioning technology starts from are to the international standard ISO performance data of a GSHP model and to compare its installed operation data and to calibrate and tune to the target optimum operation parameters. Results indicated that cooling capacity could be raised up to 76.6% from 46.6% from this proposed commissioning technology.

  • PDF

Status of Underground Thermal Energy Storage as Shallow Geothermal Energy (천부 지열에너지로서의 지하 열에너지 저장 기술 동향)

  • Shim, Byoung-Ohan;Lee, Chol-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.197-205
    • /
    • 2010
  • Recently abrupt climate changes have been occurred in global and regional scales and $CO_2$ reduction technologies became an important solution for global warming. As a method of the solution shallow underground thermal energy storage (UTES) has been applied as a reliable technology in most countries developing renewable energy. The geothermal energy system using thermal source of soil, rock, and ground water in aquifer or cavern located in shallow ground is designed based on the concept of thermal energy recovery and storage. UTES technology of Korea is in early stage and consistent researches are demanded to develop environmental friendly, economical and efficient UTES systems. Aquifers in Korea are suitable for various type of ground water source heat pump system. However due to poor understanding and regulations on various UTES high efficient geothermal systems have not been developed. Therefore simple closed U-tube type geothermal heat pump systems account for more than 90% of the total geothermal system installation in Korea. To prevent becoming wide-spread of inefficient systems, UTES systems considering to the hydrogeothemal properties of the ground should be developed and installed. Also international collaboration is necessary, and continuous UTES researches can improve the efficiency of shallow geothermal systems.

The Effects of the Installation Conditions of Ground Loop Heat Exchanger to the Thermal Conductivity and Borehole Resistance (지중열교환기 설치 조건이 지중 유효 열전도도와 보어홀 열저항에 미치는 영향)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Kang, Sung-Jae;Choi, Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • A ground loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. A proper design requires certain site specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U tube configurations on ground effective thermal conductivity and borehole thermal resistance. In this study, thermal response tests were conducted using a testing device to 9 different ground loop heat exchangers. From the experimental results, the length of ground loop heat exchanger affects to the effective thermal conductivity. The results of this experiment shows that higher thermal conductivity of grouting materials leads to the increase effective thermal conductivity from 22 to 32%. Also, mounting spacers have increased by 14%.

Numerical Study of Heat Transfer Efficiency, Performace and Mechanical Behavior induced by Thermal Stress of Energy Pile (에너지 파일의 열교환 효율 및 성능, 열응력에 의한 역학적 거동 평가)

  • Min, Sun-Hong;Lee, Chul-Ho;Park, Moon-Seo;Koh, Hyung-Seon;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.9-14
    • /
    • 2010
  • The ground source heat pump system is increasingly being considered as an alternative to traditional heating and cooling systems to reduce the emission of ground house gases. In this paper, A series of numerical analysis for energy piles has been performed focusing on heat transfer efficiency, performance and thermal stress. Results of numerical analyses for the W-shape type shows more efficient heat exchange transfer than the coil type. From results of the thermo-mechanical analysis, it is shown that the concentration of thermal stress occurs around the circulating pipe and the interfaces between different materials. The largest deformation caused by thermal stress is observed in the energy pile.

Hydraulic feasibility study on the open-loop geothermal system using a pairing technology (복수정 페어링 기술을 이용한 개방형 지열 시스템의 수리적 타당성 검토)

  • Bae, Sangmu;Kim, Hongkyo;Kim, Hyeon-woo;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.119-124
    • /
    • 2017
  • Purpose: Groundwater heat pump (GWHP) system has high coefficient of performance than conventional air-source heat pump system and closed-loop type geothermal system. However, there is problem in long-term operation that groundwater raise at the diffusion well and reduced at the supply well. Therefore, it is necessary to accurately predict the groundwater flow, groundwater movement and control the groundwater level in the wells. In this research, in consideration of hydrogeological characteristic, groundwater level and groundwater movement were conducted analysis in order to develop the optimal design method of the two-well system using the pairing pipe. Method: For the optimum design of the two-well system, this research focused on the design method of the pairing pipe in the simulation model. Especially, in order to control the groundwater level in wells, pairing pipe between the supply well and diffusion well was developed and the groundwater level during the system operation was analyzed by the numerical simulation. Result: As the result of simulation, the groundwater level increased to -2.65m even in the condition of low hydraulic conductivity and high pumping flow rate. Consequently, it was found that the developed system can be operated stably.