• Title/Summary/Keyword: geotextiles

Search Result 105, Processing Time 0.033 seconds

Present States of Geosynthetics used in the Highway Construction (고속도로 건설에 사용되는 토목섬유 현황과 개선사항 고찰)

  • 조성민;이학구;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.157-168
    • /
    • 1999
  • Geosynthetics are commonly used for filtering, layer separations, drainages, cutoffs, and reinforcements. In highway constructions, geotextile mats have been used for the purposes of vehicle trafficability, separations and embankment reinforcements. Geosynthetics are utilized as prefabricated vertical drains and also used as horizontal drainage layers substituted for the sand mat. Geogrids, essential element of reinforced retaining walls, are sometimes spread under the highway pavement. Besides various usage mentioned above, many type of them are also used as drainage of backfill in culverts and bridge abutments. In this paper, problems of specifications and regulations concerning mostly used geotextiles are specifically dealt with from the practical aspects of field engineering and efforts are given upon improvement of them. Especially, relevant sections of "Standard Specifications for the Highway Construction by Korea Highway Corporation"are being revised and these are introduced in detail.

  • PDF

Assesment of Weather ability of Polyester/Polypropylene Geotextile Composites (폴리에스테르/폴리프로필렌 복합형 지오텍스타일의 내후성 평가)

  • 전한용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.39-55
    • /
    • 1999
  • Geotextile composites to improve the weather ability were composed of recycled polyester geotextile with carbon black as ultraviolet stabilizer and polypropylene geotextile by needle-punching method, and evaluated physical properties, ultraviolet resistance and chemical stability. Retention ratio of tensile properties of non woven polypropylene geotextiles were decreased about 50% by the exposed condition with ultraviolet but those of geotextile composites were slightly decreased than polypropylene geotextiles. Geotextile composites which have larger weights of polyester geotextile were more stable against ultraviolet. For chemical stability, the changes of tensile properties of geotextile composites were in the range of -20~+10% at the various chemical conditions.

  • PDF

Stress-Strain Properties of Geosynthetics by Confined Extension Tests (구속신장시험에 의한 토목섬유의 인장력-변형률거동 특성)

  • Bang, Yoon-Kyung;Jeon, Young-Dae;Lee, Jun-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.52-57
    • /
    • 2002
  • In this study. stress-strain relationships were investigated by performing the confined extension tests for seven types of geosynthetics such as geotextiles, composite geosynthetics and geogrids. A comparison was made between unconfined and confined moduli for each geosynthetic material to quantify the soil confinement effect on stress-strain properties. A comparison was also made between the increase of moduli at the same strain level with the types of the geosynthetics to demonstrate the different stress-strain responses. Based on the result of the extension tests, the higher the confining stress, the larger the secant modulus of geosynthetics. The secant modulus at 5% strain is twice as much as that of 10% strain, especially there is a noticeable increasing of secant modulus for the two nonwoven geotextiles.

Determination of Opening Size of Geotextiles (토목섬유의 유효구멍크기 측정방법 및 측정결과 평가)

  • Cho, Sam-Deok;Kim, Ju-Hyong;Lee, Kwang-Wu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.111-120
    • /
    • 2006
  • Opening size of 3 types of geotextile were tested using dry and wet sieving methods to evaluate characteristics of test methods and to compare the test results. Judging from test results, dry sieving method is a poor test, having many problems causing many errors but a simple-quick test. Wet sieving method is a very specific test avoiding many of the problems of dry sieving such as electrostatic charges, trapping in the geotextiles and so on. However, one of wet sieving tests, KSK ISO12956, takes long time to complete a test and is too strict to handle loss of granular material. Generally, opening size of a geotextile by wet sieving test is smaller than that of dry sieving test. Especially, opening size by KSF 2126 which is one of wet sieving test but disused at present anymore is similar or smaller than that by KSK ISO12956 method.

  • PDF

Study on Anisotropic Creep Behavior of Nonwoven Geotextiles

  • Das A.;Kothari V. K.;Kumar A.;Mehta M. S.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.313-317
    • /
    • 2005
  • The anisotropy in creep behavior of two types of nonwoven fabrics (needle-punched and thermobonded spun laid) has been studied. It has been observed that the amount of time dependent extension depends on the direction, amount of loading and the structure of nonwoven the fabrics. The time dependent extension (creep) for the nonwoven fabric increases with the increase in amount of load. The higher initial extension and creep are observed for needle-punched nonwoven fabric as compared to thermobonded spun-laid nonwoven fabric. The creep behavior of needle-punched nonwoven shows a logarithmic relationship with time, but the thermobonded spun-laid nonwoven fabric does not show such logarithmic relationship. For a particular fabric, the creep is dependent on the fiber arrangement and is minimum in the direction in which the proportion of fiber is maximum and visa versa.

Stability Analysis of Very Soft Soils Using Geotextiles: The Role of Model Test and Finite Element Analysis (토목섬유로 보강한 연약지반의 안정도 해석: 모형실험과 유한요소해석)

  • 고홍석;고남영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.39-53
    • /
    • 1994
  • To investigate the behaviour of the embankment on very soft foundation reinforced geotex- files,the laboratory model test in order to analyze the elementary effects of geotextile reinfor- cement and the finite element program analyzing the stresses and deformations characteristics was carried out. A two-dimensional nonlinear finite element program called GEOTEXT(a modification of ISBILD) for the static analysis of embankment on very soft foundation reinforced geotextiles has been developed. Both linear and nonlinear hyperbolic stress-strain soil models are inclu- ded, and incremental and stage construction can be simulated. However, the program GEO- TEXT is not developed herein as an adaptable design tool for practicing engineer. It was found that the geotextile reinforcement significantly reduced the shear stresses in the foundation and decreased the vertical differential settlements at the top of the embank- ment. This influence was more pronounced as the tensile strength of the geotextile was increased.

  • PDF

Interface Frictional Characteristics of Geotextile Container for the Restoration of Roadbed swept away by Rainfall (강우로 유실된 철도노반 보수용 토목섬유 콘테이너의 상호마찰 특성)

  • 황선근;최찬용;신은철;이명호
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.587-595
    • /
    • 2002
  • Geotextile containers for restoration of slopes form the interface between the containers during the restored to lost slopes, and therefore the relation displacements are developed including the sliding on the surface. Since, the shear strength on these interfaces is less than that of fill material in the container, the characteristics of shear strength on the interface governs the behavior of the restoration slopes. In general, a lot of natural properties of geotexiles is required to evaluate the safty of the geotextiles, Among the properties, the shear characteristics between geotextiles and soil is a important variable to assess the safety. From the results of full scale direct shear test, the residual shear strength is recommanded to use for design factors since a large deformation possibly occures on the geotextile containers.

  • PDF

Effect of Non-Woven Geotextile Reinforcement on Mechanical Behavior of Sand (모래의 역학적 거동에 미치는 부직포 보강재의 효과)

  • Kim, You-Seong;Oh, Su-Whan;Cho, Dae-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.39-45
    • /
    • 2010
  • The effects of non-woven geotextiles on mechanical behavior of sand were investigated. A comprehensive series of triaxial compression tests were performed for these investigation on unreinforced and reinforced sand with geotextiles. The Joomunjin standard sand was used and non-woven geotextiles were included into sand specimen with three layers. The inclusion of non-woven geotextile reinforcement into sand increased the peak strength of sand significantly and the reinforced samples exhibited a greater axial strain at failure. Also the effect on number of reinforcement layers was studied and found as increasing the number of reinforcement layers resulting in more ductility by clogging developed in the shear band within the specimens. It was also found that the tendency of samples to dilate is restricted by non-woven geotextile inclusion. The effect of nunber of reinforcement layer increasing is just same to the effect of decreasing void ratio of sand in this case.

  • PDF

Measurement of Nonwoven Geotextile Deformation with Strain Gauges (스트레인 게이지를 이용한 부직포의 변형거동 계측)

  • Won, Myoung-Soo;Lee, Yong-An;Ko, Hyoung-Woo;Kim, You-Seong;Park, Byung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.96-102
    • /
    • 2006
  • Because of the increasing need to use clayey soil as the backfill in reinforced soil structures and embankment material, nonwoven geotextiles with the drain capability have been receiving much attention. However, there are few studies of the deformation behavior of nonwoven geotextiles at geosynthetics reinforced soil structures in the field because the nonwoven geotextile, which has low tensile stiffness and higher deformability than geogrids and woven geotextiles, is difficult to measure its deformation by strain gauges and to prevent the water from infiltrating. This study proposes a new, more convenient method to measure the deformation behaviour of nonwoven geotextile by using a strain gauge; and examines the availability of the method by conducting laboratory tests and by applying it on two geosynthetics reinforced soil (GRS) walls in the field. A wide-width tensile test conducted under confining pressure of 7kPa showed that the local deformation of nonwoven geotextile measured with strain gauges has a similar pattern to the total deformation measured with LVDT. In the field GRS walls, nonwoven geotextile showed a larger deformation range than the woven geotextile and geogrid; however, the deformation patterns of these three reinforcement materials were similar. The function of strain gauges attached to nonwoven geotextile in the walls works normally for 16 months. Therefore, the method proposed in this study for measuring nonwoven geotextile deformation by using a strain gauge proved useful.

  • PDF