• Title/Summary/Keyword: geotechnical properties and durability

Search Result 39, Processing Time 0.026 seconds

Strength and mechanical behaviour of coir reinforced lime stabilized soil

  • Sujatha, Evangelin Ramani;Geetha, A.R.;Jananee, R.;Karunya, S.R.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.627-634
    • /
    • 2018
  • Soil stabilization is an essential engineering process to enhance the geotechnical properties of soils that are not suitable for construction purposes. This study focuses on using coconut coir, a natural fibre to enhance the soil properties. Lime, an activator is added to the reinforced soil to augment its shear strength and durability. An experimental investigation was conducted to demonstrate the effect of coconut coir fibers and lime on the consistency limits, compaction characteristics, unconfined compressive strength, stress-strain behaviour, subgrade strength and durability of the treated soil. The results of the study illustrate that lime stabilization and coir reinforcement improves the unconfined compressive strength, post peak failure strength, controls crack propagation and boosts the tensile strength of the soil. Coir reinforcement provides addition contact surface, improving the soil-fibre interaction and increasing the interlocking between fibre and soil and thereby improve strength. Optimum performance of soil is observed at 1.25% coir fibre inclusion. Coir being a natural product is prone to degradation and to increase the durability of the coir reinforced soil, lime is used. Lime stabilization favourably amends the geotechnical properties of the coir fibre reinforced soil.

Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume

  • Moayyeri, Neda;Oulapour, Masoud;Haghighi, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.195-206
    • /
    • 2019
  • The gypsiferous soils are significantly sensitive to moisture and the water has a severe destructive effect on them. Therefore, the effect of lime and silica fume addition on their mechanical properties, when subjected to water, is investigated. Gypsiferous soil specimens were mixed with 1, 2 and 3% lime and 1, 3, 5 and 7% silica fume, in terms of the dry weight of soil. The specimens were mixed at optimum moisture content and cured for 24 hours, 7 and 28 days. 86 specimens in the sizes of unconfined compression strength test mold were prepared to perform unconfined compressive strength and durability tests. The results proved that adding even 1% of each of these additives can lead to a 15 times increase in unconfined compressive strength, compared with untreated specimen, and this increases as the curing time is prolonged. Also, after soaking, the compressive strength of the specimens stabilized with 2 and 3% lime plus different percentages of silica fume was considerably higher than before soaking. The durability of the treated specimens increased significantly after soaking. Direct shear tests showed that lime treatment is more efficient than silica fume treatment. Moreover, it is concluded that the initial tangent modulus and the strain at failure increased as the normal stress of the test was increased. Also, the higher lime contents, up to certain limits, increase the shear strength. Therefore, simultaneous use of lime and silica fume is recommended to improve the geotechnical properties of gypsiferous soils.

Investigation of Physical and Mechanical Properties for a Central Core Rockfill Dam (중심코아형 록필댐 제체의 물리적 및 역학적 특성 조사)

  • 신동훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.345-350
    • /
    • 1999
  • In this study the results of investigation on the physical and mechanical properties of a rockfill dam body were provided. On the crest of the old Namgang dam to be excavated partially, various in-situ tests(boring with SPT, sampling of undisturbed sample, field density test, field permeability test) and geophysical investigation works were performed Rock materials, i.e., shale and sandstone, were collected, and their slake durability was evaluated using slaking durability testing method which is suggested by ISRM.

  • PDF

Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran

  • Azarafza, Mohammad;Ghazifard, Akbar;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.393-405
    • /
    • 2019
  • This paper evaluates the geotechnical and geo-engineering properties of the South Pars Zone (SPZ) marls in Assalouyeh, Iran. These marly beds mostly belong to the Aghajari and Mishan formations which entail the gray, cream, black, green, dark red and pink types. Marls can be observed as rock (soft rock) or soil. Marlstone outcrops show a relatively rapid change to soils in the presence of weathering. To geotechnically characterise the marls, field and laboratory experiments such as particle-size distribution, hydrometer, Atterberg limits, uniaxial compression, laboratory direct-shear, durability and carbonate content tests have been performed on soil and rock samples to investigate the physico-mechanical properties and behaviour of the SPZ marls in order to establish empirical relations between the geo-engineering features of the marls. Based on the experiments conducted on marly soils, the USCS classes of the marls is CL to CH which has a LL ranging from 32 to 57% and PL ranging from 18 to 27%. Mineralogical analyses of the samples revealed that the major clay minerals of the marls belong to the smectite or illite groups with low to moderate swelling activities. The geomechanical investigations revealed that the SPZ marls are classified as argillaceous lime, calcareous marl and marlstone (based on the carbonate content) which show variations in the geomechanical properties (i.e., with a cohesion ranging from 97 to 320 kPa and a friction angle ranging from 16 to 35 degrees). The results of the durability tests revealed that the degradation potential showed a wide variation from none to fully disintegrated. According to the results of the experiments, the studied marls have been classified as calcareous marl, marlstone and argillaceous lime due to the variations in the carbonate and clay contents. The results have shown that an increase in the carbonate content leads to a decrease in the degradation potential and an increase in the density and strength parameters such as durability and compressive strength. A comparison of the empirical relationships obtained from the regression analyses with similar studies revealed that the results obtained herein are reasonably reliable.

Comparative research on expansive soil stabilization using ecofriendly materials versus nano-materials

  • Ali Hasan Hammadi Algabri;Seyed Alireza Zareei;Mohamed Jassam Mohamed Al Taee;Niloofar Salemi
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.125-136
    • /
    • 2024
  • In the present research the durability and geotechnical properties of an expensive clayey soil stabilized by two different compositions of additives were investigated and compared. The first composition consisted of environmentally and ecofriendly materials: BOF steel slag ranging from 0-20% as well as rice husk ash (RHA) ranged 0-16%wt of dry soil. The other composition consisted of relatively new generation of materials including nanomaterials: nano-CaCO3 as well as nano-SiO2. Atterberg limits test, free swell percent test, swelling pressure test and unconfined compressive test were used to assess the stabilizers influences upon expansive soil geotechnical characteristics. Also, the recurrent wet-dry cycles test was exerted on experimental and non-experimental samples for estimating stabilizers effects on durability. According to the results, each of the BOF slag and RHA enhances the expansive soil properties individually, while combination of slag-RHA led to better improvement of the soil properties. Also, the composition of nano-CaCO3 and SiO2 dramatically improved the clay soil operation. The optimum values of slag+RHA were suggested as 20% slag+12% RHA to enhance percent of swelling, pressure of swelling in addition to UCS as much as 95%, 96%, and 370%, respectively. The optimum value for the second stabilizer in this study was found to be 2%nano-SiO2+2% nano-CaCO3 which led to 318% increase in UCS and 86% decrease in swelling pressure.

Evaluation of Durability and Long-term Design Tensile Strength of Flexible Geogrids (연성 지오그리드의 내구성 및 장기설계인장강도 평가)

  • 조삼덕;김진만;안주환;전한용;조성호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.21-38
    • /
    • 1999
  • Engineering properties of most polymers used in geosynthetics such as geogrid can be degraded by the chemical reaction (e.g., oxidization, ultraviolet rays, hydrolysis etc.), chemical and mechanical load, microorganism, and so on. In addition, polymer can be damaged by the compaction during construction, and the characteristic of tensile strength of polymer can be changed by the long-term creep effect. In this study, engineering properties of flexible geogrids which are manufactured by weaving/knitting the high-tenacity polymers such as polyester formed in a very open, grid-like configuration, coated with any one of a number of materials (e.g., PVC, latex, etc.), are investigated. Through the analysis of test results, the durability and the long-term design tensile strength of flexible geogrids are evaluated.

  • PDF

Engineering Properties of Self-healing Smart Grouting Method (자기치유 기능을 이용하는 SSG공법의 공학적 특성)

  • Moon, In-Jong;Kim, Byoung-Il;Heo, June;Choi, Yong-Sung;Choi, Yong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.29-37
    • /
    • 2016
  • SSG (self-healing smart grouting) method, which is developed recently, has the characteristics such as an improvement of durability and waterproofing, prevention of leaching and pollution. In this study, we performed several tests such as gel-time measurement, uniaxial compression test, permeability test, fish poison test and chemical resistance test to compare the engineering properties of SSG with the other chemical grouting method (LW, SGR). As results of tests, the SSG method has low possibility of groundwater and ground pollution caused by leaching, furthermore, it has advantages like long/short term waterproofing, strength and durability. Therefore the SSG method can be applicable in the fields as an alternative of existing chemical grouting methods with problems.

Strength and durability characteristics of biopolymer-treated desert sand

  • Qureshi, Mohsin U.;Chang, Ilhan;Al-Sadarani, Khaloud
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.785-801
    • /
    • 2017
  • Biopolymer treatment of geomaterials to develop sustainable geotechnical systems is an important step towards the reduction of global warming. The cutting edge technology of biopolymer treatment is not only environment friendly but also has widespread application. This paper presents the strength and slake durability characteristics of biopolymer-treated sand sampled from Al-Sharqia Desert in Oman. The specimens were prepared by mixing sand at various proportions by weight of xanthan gum biopolymer. To make a comparison with conventional methods of ground improvement, cement treated sand specimens were also prepared. To demonstrate the effects of wetting and drying, standard slake durability tests were also conducted on the specimens. According to the results of strength tests, xanthan gum treatment increased the unconfined strength of sand, similar to the strengthening effect of mixing cement in sand. The slake durability test results indicated that the resistance of biopolymer-treated sand to disintegration upon interaction with water is stronger than that of cement treated sand. The percentage of xanthan gum to treat sand is proposed as 2-3% for optimal performance in terms of strength and durability. SEM analysis of biopolymer-treated sand specimens also confirms that the sand particles are linked through the biopolymer, which has increased shear resistance and durability. Results of this study imply xanthan gum biopolymer treatment as an eco-friendly technique to improve the mechanical properties of desert sand. However, the strengthening effect due to the biopolymer treatment of sand can be weakened upon interaction with water.

Uniaxial Compressive Strength Characteristic of Shotcrete Immersed in Chemical Solution (화학적 침식에 의한 숏크리트의 압축강도 특성)

  • Lee, Gyu-Phil;Kim, Dong-Gyou;Bae, Gyu-Jin;Kim, Hong-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1291-1298
    • /
    • 2005
  • Shotcrete for the support of tunnel can contact with groundwater. The hazardous components in the groundwater cause the corrosion of shotcrete. Also, the hazardous components may deteriorate the engineering properties of shotcrete, such as compressive strength, bond strength, and flexural strength. The more the effect of the hazardous components on the shotcrete may increase, the more the stability of tunnel structure may decrease. It was analyzed to find the hazardous components in the ground water. The uniaxial compressive strength test, XRD, SEM were conducted to evaluate the durability and corrosion of shotcrete. These tests were performed on shotcrete specimens at 2, 4, 8, and 16 weeks. The specimens were immersed in various chemical solutions including hazardous components after the specimens were made at the construction site.

  • PDF

A Fundamental Study for Proper Maximum Size of Coarse Aggregate of Ready-mixed Shotcrete (레디믹스트 숏크리트의 적정 골재최대치수 제안을 위한 기초적 연구)

  • Ma, Sang-Joon;Choi, Hee-Sup;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.47-55
    • /
    • 2008
  • This study was carried out to investigate and analyse the influence of maximum size of coarse aggregate and quality control of aggregate on the properties of shotcrete through the laboratory and field test. From the results of the test, as the maximum size of coarse aggregate decreased from 13 mm to 8 mm, plasticity property declined and compressive strength and dynamic modulus of elasticity of hardened concrete increased remarkably, so it was found that the aggregate size 8 mm was superior to 13, 10 mm in fluidity, constructability and durability. Therefore, it was advisable for well maximum size of coarse aggregate to apply to the 8mm aggregates through the Ready-mixed Method for quality control and minimum segregation.