• Title/Summary/Keyword: geotechnical behavior

Search Result 1,580, Processing Time 0.024 seconds

Model Tests on Deformation Behavior of Soft Ground Under Embankment (성토하부 연약지반의 변형거동에 관한 모형실험)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Hong, Won-Pyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • When embankments are constructed on soft clay deposit, unsymmetrical surcharges due to embankments may generate the excessive vertical settlement and lateral deformation of soft clay foundation. The excessive deformations in soft grounds cause not only stability problem of the embankment itself but also that of the adjacent structures. The objectives of this research are to study the deformational behavior of soft ground due to the embankment load with different loading and soil conditions. Five model tests are carried out with different test conditions. From the results of the model tests, it is concluded that the lateral displacement induced by the embankment load occurs in the range of two times of the embankment width from a toe. In addition, the relationship between loading rate, v, and the vertical settlement of the soft ground, ${\Delta}s$, and the lateral displacement at the toe of embankment, ${\Delta}y_m$, is investigated based on the model test results.

Large Deformation Analysis Using an Anistropic Hardening Constitutive Model : II. Analysis (비등방경화 구성모델을 이용한 대변형 해석 :II. 해석)

  • 전병곤;한성수;오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.215-228
    • /
    • 2002
  • In a companion paper. (Oh, 2002), the constitutive model, called GUX model, was implemented as a user subroutine in ABAQUS code, where the GUX model could describe the behavior of overall strain range. An accuracy analysis verified that the implicit stress integration maintained the accuracy of solutions successfully. Since the GUX model is an anistropic hardening elasto-plastic constitutive model based on total stress concept, geotechnical problems under fully drained or undrained condition can be analyzed after acquisition of stress-strain relationships from drained or undrained triaxial tests. This study includes the analyses of the stability of embankments on soft clays and weathered soils and the example of axially loaded soil-pile system. In the large deformation analyses, geometric nonlinearity was considered and the result of analyses with GUX model was compared with that of Mises model for the overall strain range behavior.

Critical Buckling Characteristics of Micropiles Under Axial Loads (축하중을 고려한 마이크로파일의 임계좌굴특성)

  • Jeong, Hyeon-Sik;No, In-Soo;Lee, Yeong-Seang
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.39-51
    • /
    • 2015
  • various soil conditions as its application to foundation retrofit works has increased. However, most of the domestic researches focused mainly on bearing behavior of Case-I and Case-II type micropiles, whereas structural verification research was insufficient in relation with bulking behavior in particular. In this respect, this study was perfomed to understand the critical buckling characteristics of micropiles under axial load with various steel bars and grout conditions. As a result, it was found that a critical buckling shear strength of a micropile increases for smaller diameter micropile and a critical buckling load decreases with a longer length in the condition under the critical buckling length. Also, a method to evaluate a buckling possibility and yield behavior under axial compressive load conditions is proposed.

Lateral Behavior and Joint Stability of Non-Welding Composite Pile (무용접 복합말뚝 수평거동특성 및 연결부 안정성 평가)

  • Ko, Jun-Young;Shin, Yun-Sup;Jeong, Sang-Seom;Boo, Kyo-Tag
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.108-118
    • /
    • 2009
  • As increasing demand on marine structures and skyscrapers, a deep shaft pile is frequently to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in engineering field, steel pile is highly used due to its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is to examine the composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile A non welding connection method is applied to this composite pile. This study had step of comparison with the result of numerical analysis after analyzing the result of field test. Numerical analysis is the process of analyzing lateral behavior of non welding composite pile. Moreover, detailed analysis was implemented in order to evaluate joint stability. As a result of the analysis, we could interpret that the stability of the connection part is ensured as seeing the smaller internal stress than approved internal stress. Based on this study, we analyzed lateral behavior of non welding composite pile, which ensured the stability of connection part.

  • PDF

Evaluation of Caisson Quay Wall Behavior during the 1995 Kobe Earthquake by Nonlinear Effective Stress Analysis (비선형 유효응력해석을 이용한 1995 Kobe 지진시 케이슨 안벽의 거동 평가)

  • Lee, Jin-sun;Noh, Gyeong-do
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.401-412
    • /
    • 2016
  • On Tuesday, January 17, 1995, an earthquake of magnitude 7.2 struck the Port of Kobe. In effect, the port was practically destroyed. After a hazard investigation, researchers reached a consensus to adopt a performance-based design in port and harbor structures in Japan. A residual displacement of geotechnical structures after an earthquake is one of the most important engineering demands in performance-based earthquake-resistant design. Thus, it is essential to provide reliable responses of geotechnical structures after an earthquake through various techniques. Today, a nonlinear explicit response history analysis(NERHA) of geotechnical structures is the most efficient way to achieve this goal. However, verification of the effective stress analysis, including post liquefaction behavior, is difficult to perform at a laboratory scale. This study aims to rigorously verify the NERHA by using well-defined field measurements, existing numerical tools, and constitutive models. The man-made, Port Island, in Kobe provides intensive hazard investigation data, strong motion records of 1995 Kobe earthquake, and sufficient engineering parameters of the soil. Two dimensional numerical analysis was conducted on the caisson quay wall section at Port Island subjected to the 1995 Kobe earthquake. The analysis result matches very well with the hazard investigation data. The NERHA procedure presented in this paper can be used in further studies to explain and examine the effects of other factors on the seismic behavior of gravity quay walls in liquefiable soil areas.

Characteristics of Compressive Strength of Geogrid Mixing Reinforced Lightweight Soil (지오그리드 혼합 보강경량토의 압축강도특성 연구)

  • Kim, Yun-Tae;Kwon, Yong-Kyu;Kim, Hong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.37-44
    • /
    • 2006
  • This paper investigates strength characteristics and stress-strain behaviors of geogrid mixing reinforced lightweight soil. The lightweight soil was reinforced with geogrid in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions including cement content, initial water content, air content and geogrid layer and then unconfined compression tests were carried out. From the experimental results, it was found that unconfined compressive strength as well as stress-strain behavior of lightweight soil was strongly influenced by mixing conditions. The more cement content that is added to the mixture, the greater its unconfined compressive strength. However, the more initial water content or the more air foam content, the less its unconfined compressive strength. It was observed that the compressive strength of reinforced lightweight soil increased reinforcing effect by the geogrid for most cases. Stress-strain relation of geogrid mixing reinforced lightweight soil showed a ductile behavior rather than a brittle behavior. In reinforced lightweight soil, secant modulus ($E_{50}$) also increased as its compressive strength increased due to the inclusion of geogrid.

Stochastic Seepage Analysis of Dam (확률론적 댐 침투거동 해석)

  • Cho Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.73-83
    • /
    • 2006
  • Seepage analysis through unsaturated zone based on the theory of unsaturated flow is commonly performed to evaluate dam safety. However, the concepts of unsaturated soil behavior have not been transferred into the hands of practicing geotechnical engineers since the problems involving unsaturated soils often have the appearances of being extremely complex. There is variability and uncertainty associated with the unsaturated hydraulic properties that in turn will lead to variability in predicting unsaturated soil behavior such as seepage rate and the pore water pressure distribution. In this paper, measurements of the soil-water characteristic curve and saturated hydraulic conductivity for the core material of dam were conducted. Then, finite element stochastic analysis was used to capture the effect of unsaturated hydraulic properties on the seepage behavior of dam. It is observed that the amount of seepage increases, as the values of unsaturated soil parameters a and n increase. The values of m and p showed opposite trend.

Analysis of Mat Foundation by Considering Interface with Rock Mass (전면기초-하부암반 접촉면의 영향분석)

  • Lee, Jae-Hwan;Cho, Jae-Yeon;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.39-47
    • /
    • 2010
  • In recent days, the foundations of huge structures in general and mega foundations of grand bridges and high-rise buildings in particular are required in geotechnical engineering. This study described 3 dimensional behavior of mat foundation on soft rock based on a numerical study using 3D finite element method. A series of numerical analyses were performed for various soil conditions and mat rigidities under vertical loading. Based on the results of the parametric study, it is shown that the prediction of the settlement, cross sectional tensile stress and bending moments in the mat is overestimated in the analysis without considering interface behavior in comparison with the analysis considering interface between mat and rock mass.

Finite Element Analysis of the Direct Shear Test (직접 전단시험의 유한 요소 해석)

  • 이장덕
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.21-36
    • /
    • 1996
  • The stress transfer mechanism between soil and grid reinforcements involves two basic mechanism : frictional soil resistance and passive soil resistance. However the mechanism of the passive soil resistance is very complex to understand. To study the failure mechanism of ribbed reinforcement, the direct shear tests which are dominated by passive soil resistance are analyzed by using the finite element method. The finite element method is used to examine the effects of ribs on this passive soil resistance development and the met hanism of failure. The calculated behavior of the ribbed reinforcement is compared with the measured behavi or. Comparisons between the measured and the simulated strain pat terns, failure modes and load displacement relationship are presented. The behavior of the ribbed reinforcements in a cohesive soil is predicted on the basis of a good agreement between the measured and the Predicted behavior of the Ottawa sand.

  • PDF

A Study on the Failure Behavior of the Reinforced Earth Wall Structures according to the Deformed Types of the Face (전면부 변형형태에 따른 보강토 벽체 구조물의 파괴거동에 관한 연구)

  • 김준석;이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.167-173
    • /
    • 1999
  • In this paper the failure behavior of the reinforced earth retaining wall structures according to the deformed types of the face was studied by model test using carbon rods. In model test the behavior of the face for the model of the reinforced earth wall was divided into three cases : the displacement of the top part(case 1), the lateral displacement(case 2) and the displacement of the lower part (case 3). The photographic method was applied to examine the failure line of the deformed wall with the naked eye. The failure line shows a parabolic shape for case 1, a large circular arc for case 2 and a logarithmic spiral for case 3 in the experimental results. The design failure line for the coherent gravity structure hypothesis was most similar to the failure line for the case of the lower part displacement.

  • PDF