• Title/Summary/Keyword: geospatial information

Search Result 1,549, Processing Time 0.027 seconds

A Study on the Development of Land Suitability Analysis System using GSIS in the Landuse Planning (토지이용계획에 있어 GSIS를 이용한 적지분석시스템 개발에 관한 연구)

  • Lim, Seong-Hyeon;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.43-61
    • /
    • 1995
  • The national land use plan that targets the whole national land and all kinds of urban plans that targets a city or a part of city must be performed continuously now and after that. Therefore, the importance of land use plan, that is included in those plans, is very big and crucial. This study scrutinizes the detail zoning land suitability analysis which bases on urban basis plan and the GSIS application plan about allocation, applied various basic theory which is arranged in that course to study area, and try to develop the land use suitability analysis system, a application system The programing language used in system development is the AML of ARC/INFO. On this study, the results divide into four parts. First, we develop the land use suitability analysis system and can simplify and automatize a complicated analysis course and this system will be more useful to the land use suitability analysis. Second, the analysis range is expanded, considering the circumstance environmental factor of planning area outside. So we can implement more comprehensive analysis. Third, we apply a precedency conception and a legal restrictive element that base on urban characteristics and urban space structure theory to this study, develop a computerized method about distributive method, and can allocate the detail zone in the various ways. Finally, the next studies that can clear the detail zone suitability criteria and the correlation of the relationship of materials are essential to improve the accuracy and confidence in this analysis.

  • PDF

Evaluation of Accuracy and Utilization of the Drone Photogrammetry for Open-pit Mine Monitoring (노천광산 모니터링을 위한 드론 사진측량의 정확도 및 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.191-196
    • /
    • 2019
  • The development of open-pit mines leads to large-area topographical changes in highland forests and can lead to severe deterioration of forests, requiring continuous monitoring. The drone photogrammetry is performed at a lower altitude than the existing manned aerial photogrammetry, and thus has a relatively high accuracy. The purpose of this study is to construct spatial information of large open pit mine using drone photogrammetry and to evaluate the accuracy and utilization of the results. The accuracy of the drone photogrammetric results was 0.018 ~ 0.063m in the horizontal direction and 0.027m ~ 0.088m in the vertical direction. These results satisfy the permissible accuracy of 1: 1,000 digital topographic map and it can be used for open mine monitoring. The geospatial information of the open pit mine can be used in various ways, and it can be used to monitor the quantitative change of a specific area for time series change through data management by periodic data acquisition. If drone photogrammetry is applied to open-pit mine monitoring in the future, work time and cost can be greatly reduced compared to the conventional GNSS or total station method, and the work efficiency can be greatly improved because more visible data can be generated.

Accuracy Analysis of Cadastral Control Point and Parcel Boundary Point by Flight Altitude Using UAV (UAV를 활용한 비행고도별 지적기준점 및 필지경계점 정확도 분석)

  • Kim, Jung Hoon;Kim, Jun Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.223-233
    • /
    • 2018
  • In this study was classified the cadastral control points and parcel boundary points into 40m, 100m by flight altitude of UAV (Unmanned Aerial Vehicle) which compared the coordinates extracted from the orthophoto with the parcel boundary point coordinates by GNSS (Global Navigation Satellite System) ground survey. As a results of this study, first, in the spatial resolution analysis that the average error of the orthoimage by flight altitude were 0.024m at 40m, and 0.034m at 100m which were higher 40m than 100m for spatial resolution of orthophotos and position accuracy. Second, in order to analyze the accuracy of image recognition by airmark of flight altitude that was divided into three cases of nothing, green, and red of RMSE (Root Mean Square Error) were X=0.039m, Y=0.019m and Z=0.055m, the highest accuracy. Third, the result of the comparison between orthophotos and field survey results that showed the total RMSE error of the cadastral control points were X=0.029m, Y=0.028m, H=0.051m, and the parcel boundary points were X=0.041m, Y=0.030m. In conclusion, based on the results of this study, it is expected that if the average error of flight altitude is limited to less than 0.05m in the legal regulations related to orthophotos for cadastral surveying, it will be an economical and efficient method for cadastral survey as well as spatial information acquisition.

RPC Model Generation from the Physical Sensor Model (영상의 물리적 센서모델을 이용한 RPC 모델 추출)

  • Kim, Hye-Jin;Kim, Jae-Bin;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.4 s.27
    • /
    • pp.21-27
    • /
    • 2003
  • The rational polynomial coefficients(RPC) model is a generalized sensor model that is used as an alternative for the physical sensor model for IKONOS-2 and QuickBird. As the number of sensors increases along with greater complexity, and as the need for standard sensor model has become important, the applicability of the RPC model is also increasing. The RPC model can be substituted for all sensor models, such as the projective camera the linear pushbroom sensor and the SAR This paper is aimed at generating a RPC model from the physical sensor model of the KOMPSAT-1(Korean Multi-Purpose Satellite) and aerial photography. The KOMPSAT-1 collects $510{\sim}730nm$ panchromatic images with a ground sample distance (GSD) of 6.6m and a swath width of 17 km by pushbroom scanning. We generated the RPC from a physical sensor model of KOMPSAT-1 and aerial photography. The iterative least square solution based on Levenberg-Marquardt algorithm is used to estimate the RPC. In addition, data normalization and regularization are applied to improve the accuracy and minimize noise. And the accuracy of the test was evaluated based on the 2-D image coordinates. From this test, we were able to find that the RPC model is suitable for both KOMPSAT-1 and aerial photography.

  • PDF

3D Visualization Techniques for Volcanic Ash Dispersion Prediction Results (화산재 확산 예측결과의 삼차원 가시화 기법)

  • Youn, Jun Hee;Kim, Ho Woong;Kim, Sang Min;Kim, Tae Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • Korea has been known as volcanic disaster free area. However, recent surveying result shows that Baekdu mountain located in northernmost in the Korean peninsula is not a dormant volcano anymore. When Baekdu mountain is erupting, various damages due to the volcanic ash are expected in South Korea area. Especially, volcanic ash in the air may cause big aviation accident because it can hurt engine or gauges in the airplane. Therefore, it is a crucial issue to interrupt airplane navigation, whose route is overlapped with volcanic ash, after predicting three dimensional dispersion of volcanic ash. In this paper, we deals with 3D visualization techniques for volcanic ash dispersion prediction results. First, we introduce the data acquisition of the volcanic ash dispersion prediction. Dispersion prediction data is obtained from Fall3D model, which is volcanic ash dispersion simulation program. Next, three 3D visualization techniques for volcanic ash dispersion prediction are proposed. Firstly proposed technique is so called 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Second technique is a 'Cube in the Cube' which divide the cube in proportion to particle concentration and locates the small cubes. Last technique is 'Semitransparent Volcanic Ash Plane', which laminates the layer, whose grids present the particle concentration, and apply the semitransparent effect. Based on the proposed techniques, the user could 3D visualize the volcanic ash dispersion prediction results upon his own purposes.

Automated Areal Feature Matching in Different Spatial Data-sets (이종의 공간 데이터 셋의 면 객체 자동 매칭 방법)

  • Kim, Ji Young;Lee, Jae Bin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.89-98
    • /
    • 2016
  • In this paper, we proposed an automated areal feature matching method based on geometric similarity without user intervention and is applied into areal features of many-to-many relation, for confusion of spatial data-sets of different scale and updating cycle. Firstly, areal feature(node) that a value of inclusion function is more than 0.4 was connected as an edge in adjacency matrix and candidate corresponding areal features included many-to-many relation was identified by multiplication of adjacency matrix. For geometrical matching, these multiple candidates corresponding areal features were transformed into an aggregated polygon as a convex hull generated by a curve-fitting algorithm. Secondly, we defined matching criteria to measure geometrical quality, and these criteria were changed into normalized values, similarity, by similarity function. Next, shape similarity is defined as a weighted linear combination of these similarities and weights which are calculated by Criteria Importance Through Intercriteria Correlation(CRITIC) method. Finally, in training data, we identified Equal Error Rate(EER) which is trade-off value in a plot of precision versus recall for all threshold values(PR curve) as a threshold and decided if these candidate pairs are corresponding pairs or not. To the result of applying the proposed method in a digital topographic map and a base map of address system(KAIS), we confirmed that some many-to-many areal features were mis-detected in visual evaluation and precision, recall and F-Measure was highly 0.951, 0.906, 0.928, respectively in statistical evaluation. These means that accuracy of the automated matching between different spatial data-sets by the proposed method is highly. However, we should do a research on an inclusion function and a detail matching criterion to exactly quantify many-to-many areal features in future.

Analysis of Spatial Resolution Characteristics for DMC/UlatraCamXp/ADS80 Digital Aerial Image Based on Visual Method (시각적 기법에 의한 DMC/UlatraCamXp/ADS80 디지털 항공영상의 공간해상도 특성 분석)

  • Lee, Tae Yun;Lee, Jae One
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.61-68
    • /
    • 2016
  • Digital aerial images have been commonly used in a large scale map production owing to their excellent geometry, and high spatial and radiometric resolution in recent years. However, a quality verification process for acquired images should be preceded in order to secure the high precision and reliability of produced results. Several experimental studies to verify digital imaging systems have been vigorously researched by constructing permanent test field in abroad. On the other hand, it is urgently necessary to suggest a practical scheme for an image quality verification, because this related study and experiment are still in its early stage at home. Hence, this study aims to present an easy method to measure the spatial resolution of the image in a visual way using a portable Siemens star. The images used in the study were obtained with three different cameras, two frame array sensors of DMC, UltraCamXp and a linear array sensor of ADS80. The Siemens star target appeared in every image is extracted and then the spatial resolution of image is compared with theoretical GSD(Ground Sample Distance) by a visual method. In addition, the change of spatial resolution depending on the location of the Siemens star from image center and flight direction and cross-flight direction is also compared and analyzed. As study results, while the theoretical GSDs of images taken with each camera are about 6~9cm, the visual resolutions are 1.2~1.3 times as great as the theoretical ones.

Single Photo Resection Using Cosine Law and Three-dimensional Coordinate Transformation (코사인 법칙과 3차원 좌표 변환을 이용한 단사진의 후방교회법)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.189-198
    • /
    • 2019
  • In photogrammetry, single photo resection is a method of determining exterior orientation parameters corresponding to a position and an attitude of a camera at the time of taking a photograph using known interior orientation parameters, ground coordinates, and image coordinates. In this study, we proposed a single photo resection algorithm that determines the exterior orientation parameters of the camera using cosine law and linear equation-based three-dimensional coordinate transformation. The proposed algorithm first calculated the scale between the ground coordinates and the corresponding normalized coordinates using the cosine law. Then, the exterior orientation parameters were determined by applying linear equation-based three-dimensional coordinate transformation using normalized coordinates and ground coordinates considering the calculated scale. The proposed algorithm was not sensitive to the initial values by using the method of dividing the longest distance among the combinations of the ground coordinates and dividing each ground coordinates, although the partial derivative was required for the nonlinear equation. In addition, since the exterior orientation parameters can be determined by using three points, there was a stable advantage in the geometrical arrangement of the control points.

Utilization of UAV Photogrammetry for Actual Condition Survey of Government Owned Lands (국·공유지 실태조사를 위한 UAV 사진측량의 활용성 검토)

  • LEE, Si-Wook;LEE, Jin-Duk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.80-91
    • /
    • 2021
  • The purpose of this study is to present the applicability to the effective survey into the actual condition of lands such as analysis of occupied location of government owned lands based on orthoimages created from aerial photographs taken by UAV. The boundary point coordinates and areas of the parcels were observed respectively by VRS-GNSS surveying and orthoimages for each land use of two categories of land, i.e. building site and farmland. As a result of comparing boundary point coordinates and areas extracted from UAV orthoimages with VRS-GNSS surveying data which were used as reference data, the RMS error of the coordinates for the boundary points was ±0.074m for both X and Y in the building site, and ±0.150m and ±0.127m for the X and Y respectively in the farmland. The positional error of the boundary point was 1.7~ 2 times higher in the farmland than in the building site where the boundary points were relatively clear. The RMS error of ±8.964㎡ of areas in the farmland was 4.7 times higher than that of ±1.898㎡ of areas in the building site. The area errors of all 22 parcels measured from the orthoimage were found to be within the allowed error range, indicating that it is feasible to apply the orthoimage generated by UAV to survey of government owned lands in terms of accuracy.

Analysis of Forest Fire Damage Areas Using Spectral Reflectance of the Vegetation (식생의 분광 반사특성을 이용한 산불 피해지 분석)

  • Choi, Seung-Pil;Kim, Dong-Hee;Ryutaro, Tateishi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.89-94
    • /
    • 2006
  • Forest damage is a worldwide issue and specially, a forest fire involves damage to itself and causes secondary damage such as a flood etc. However, actually, clear analysis on forest fire damage can be hardly conducted due to difficulty in approaching a forest fire and quite a long period of time for analysis. To overcome such difficulty, recently, forest fire damage has been actively investigated with satellite image data, but it is also difficult to obtain satellite image data fitted to the time a forest fire occurred. In addition, it is burdensome to verify accuracy of the obtained image. Therefore, this study was attempted to look into the damaged districts from forest fires by reference to spectroradiometric characteristics of the obtained vegetation with a spectroradiometer as preliminary work to use satellite image data. To begin with, the researcher analyzed the field survey data each measured 3 months and 6 months after occurrence of a forest fire by judging the extent of the damage through visual observation and using a spectroradiometer in order to investigate any potential errors arising out of one-time visual observation. Besides, in this study, groups showing possibilities that trees might be restored to life and wither to death could be classified on the sampling points where forest fire damage is minor.

  • PDF