• Title/Summary/Keyword: geosites

Search Result 24, Processing Time 0.02 seconds

Detrital zircon U-Pb ages of the Cretaceous Iljik, Jeomgok, and Sagok formations in the Cheongsong Global Geopark, Korea: Depositional age and Provenance (청송 세계지질공원 내 백악기 일직층, 점곡층, 사곡층의 쇄설성 저어콘 U-Pb 연령: 퇴적시기와 기원지)

  • Chae, Yong-Un;Choi, Taejin;Paik, In Sung;Kim, Jong-Sun;Kim, Hyun Joo;Jeong, Hoon Young;Lim, Hyoun Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.11-38
    • /
    • 2021
  • Detrital zircon U-Pb dating of samples from the Baekseoktan (Iljik Formation), Mananjaam (Jeomgok Formation), and Sinseongri (Sagok Formation) geosites in the Cheongsong Global Geopark were carried out to estimate the depositional age and provenance of the Hayang Group in the Gyeongsang Basin. In the Iljik Formation, Jurassic and Triassic zircons are dominant with minor Precambrian zircons, with no Cretaceous zircon. In contrast, the Jeomgok and Sagok formations show very similar age distributions, which have major age populations of Cretaceous, Jurassic, and Paleoproterozoic ages. The weighted mean ages of the youngest zircon age groups of the Jeomgok and Sagok formations are 103.2±0.3 and 104.2±0.5 Ma, respectively. Results suggest that the depositional ages of the Jeomgok and Sagok Formations are Albian. The detrital zircon age spectra indicate a significant change in provenance between the Iljik and Jeomgok formations. The sediments of the Iljik Formation are thought to have been supplied from nearby plutonic rocks. However, the Jeomgok and Sagok sediments are interpreted to have been derived from relatively young deposits of the Jurassic accretionary complex located in southwest Japan.

Development of Field Trip Program for Hantan River Geopark in Pocheon (포천 한탄강 지질공원에 대한 야외학습 프로그램 개발)

  • Jae-Yeon Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of Science Education
    • /
    • v.46 no.2
    • /
    • pp.165-177
    • /
    • 2022
  • This study aims to develop a field trip program for the Hantan River geopark in Pocheon using Orion's field trip model. The selected learning sites were the Hwajeogyeon and Bidulginang Falls, famous geosites of the Hantan River geopark in Pocheon. The field trip program consisted of six preparatory units, two field trip units, and two summary units. The preparatory stage helped reduce the novelty space considering cognitive, psychological, and geographical factors. In the field trip stage, students acquire concepts linked to learning elements in the curriculum scientifically and encourage interest in science. In the summary stage, students organized the geological phenomena observed in the field and inferred the vicinity of the Pocheon Hantan River region. The field trip program was modified to give enough time for observation activities to increase students' interest in science and to connect concepts with learning elements in the curriculum in the outdoor learning phase to allow students' convergent thinking. Implementing the field trip program raises students' interest and attitude in science.

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.

Natural Heritage Values and Diversity of Geoheritages on Udo Island, Jeju Province (제주도 우도 지역 내 지질유산의 다양성과 가치)

  • Woo, Kyung Sik;Yoon, Seok Hoon;Sohn, Young Kwan;Kim, Ryeon;Lee, Kwang Choon;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.290-317
    • /
    • 2013
  • The objectives of this study are to investigate the natural heritage and scientific value of various geosites on Udo Island, and to evaluate the sites as natural monuments and as world natural heritage properties. Udo Island includes a variety of geoheritage sites. Various land forms formed during the formation of the Someori Oreum formed by phreatomagmatic eruptions. The essential elements for the formation of Udo Island are the tuff cone, overflowing lava and overlying redeposited tuff sediments. Various coastal land forms are also present. About 6,000 years B.C., when sea-level rose close to its present level due to deglaciation since the Last Glacial Maximum, carbonate sediments have been formed and deposited in shallow marine environment surrounding Udo Island. In particular, the very shallow broad shelf between Udo Island and Jeju Island, less than 20 m in water depth, has provided perfect conditions for the formation of rhodoids. Significant amounts of rhodoids are now forming in this area. Occasional transport of these rhodoids by typhoons has produced unique beach deposits which are entirely composed of rhodoids. Additional features are the Hagosudong Beach with its white carbonate sands, the Geommeole Beach with its black tuffaceous sands and Tolkani Beach with its basalt cobbles and boulders. Near Hagosudong Beach, wind-blown sands in the past produced carbonate sand dunes. On the northern part of the island, special carbonate sediments are present, due to their formation by composite processes such as beach-forming process and transportation by typhoons. The development of several sea caves is another feature of Udo Island, formed by waves and typhoon erosion within tuffaceous sedimentary rocks. In particular, one sea cave found at a depth of 10 m is very special because it indicates past sea-level fluctuations. Shell mounds in Udo Island may well represent the mixed heritage feature on this island. The most valuable geoheritage sites investigated around Udo Isalnd are rhodoid depostis on beaches and in shallow seas, and Someori Oreum composed of volcanoclastic deposits and basalt lava. Beach and shallow marine sediments, composed only of rhodoids, appear to be very rare in the world. Also, the natural heritage value of the Someori Oreum is outstanding, together with other phreatomagmatic tuff cones such as Suwolbong, Songaksan and Yongmeori. Consequently, the rhodoid deposits and the Someori Oreum are worth being nominated for UNESCO World Natural Heritage status. The designation of Someori Oreum as a Natural Monument should be a prerequisite for this procedure.