• Title/Summary/Keyword: geophysics

Search Result 1,289, Processing Time 0.026 seconds

Source Mechanism of an Explosive Eruption at White Island Volcano, New Zealand, Determined from Waveform Inversions (모멘트 텐서를 이용한 White Island 화산분화 지진원 메커니즘 분석)

  • Han, Arim;Kim, Keehoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • We studied the source mechanisms of very-long-period event recorded at seismic station WIZ near White Island Volcano, New Zealand on August 4, 2012. Since seismic data at only one station were available, we conducted moment tensor inversion using three simplified models (explosion, crack, and pipe models). To constrain the moment tensor solution of seismic event, we computed synthetic data for each model to compare with observed data. Type and orientation for the best model is a crack at a depth of 1600 m with a dip of $80^{\circ}NE$ and a strike of $N80^{\circ}W$. We interpret that a deep explosion may have opened a crack for gases to escape, and the upward gas flow triggered the surface explosions four hours later as confirmed by a webcam. The interpretation based on moment tensor inversion is consistent with previous studies of geochemical data of the volcanic island.

Study on the extraction of ocean wind, wave and current using SAR (SAR를 이용한 해풍, 파랑, 해류 추출 기법 연구)

  • Kang, Moon-Kyung;Park, Yong-Wook;Lee, Moon-Jin;Lee, Hoon-Yol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.187-194
    • /
    • 2006
  • Recently satellite SAR techniques have become essential observation tools for various ocean phenomena such as wind, wave, and current. The CMOD4 and CMOD-IFR2 models are used to calculate the magnitude of wind at SAR resolution with no directional information. Combination of the wave-SAR spectrum analysis and the inter-look cross-spectra techniques provides amplitude and direction of the ocean wave over a square-km sized imagette, The Doppler shift measurement of SAR image yields surface speed of the ocean current along the rador looking direction, again at imagette resolution. In this paper we report the development of a SAR Ocean processor (SOP) incorporating all of these techniques. We have applied the SOP to several RADARSAT-1 images of the coast of Korean peninsula and compared the results with oceanographic data, which showed reliability of spaceborne SAR-based oceanographic research.

  • PDF

Study on the Extraction of Ocean Wind, Wave and Current using SAR (SAR를 이용한 해풍, 파랑, 해류 추출 기법 연구)

  • Kang, Moon-Kyung;Park, Yong-Wook;Lee, Moon-Jin;Lee, Hoon-Yol
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.35-42
    • /
    • 2007
  • Recently satellite SAR techniques have become essential observation tools for various ocean phenomena such as wind, wave, and current. The CMOD4 and CMOD-IFR2 models are used to calculate the magnitude of wind at SAR resolution with no directional information. Combination of the wave-SAR spectrum analysis and the inter-look cross-spectra techniques provides amplitude and direction of the ocean wave over a square-km sized imagette, The Doppler shift measurement of SAR image yields surface speed of the ocean current along the radar looking direction, again at imagette resolution. In this paper we report the development of a SAR Ocean processor(SOP) incorporating all of these techniques. We have applied the SOP to several RADARSAT-1 images of the coast of Korean peninsula and compared the results with oceanographic data, which showed reliability of spaceborne SAR-based oceanographic research.

H/V Spectral-ratio Analysis of Microtremors in Jeju Island (제주도 상시미동의 H/V 스펙트럼비 분석)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.144-152
    • /
    • 2010
  • To study the thickness variation of volcanic rocks of Jeju Island, microtremor data were recorded at eight and four sites using short-period and broadband seismometers, respectively, for 30 ~ 60 minutes with a 100 Hz sampling rate. During the daytime, these records show increased cultural noise at frequencies above 1.8 Hz. Natural noise occurs in the frequency range of 0.4 to 0.8 Hz in both daytime and nighttime data. Predominant frequencies determined by the H/V spectral-ratio method are in the range of 0.2 ~ 0.7 Hz. These frequencies decrease gradually as the central part of the Mt. Halla is approached. This may indicate that the basement is warped downward beneath the center of the island, which is consistent with previous gravimetric and magnetic models. Assuming an average shear-wave velocity of 1,800 m/s for the overburden basalts, the depths to basement are estimated to be between 640 and 2,140 m.

Surface nuclear magnetic resonance signal contribution in conductive terrains (전도성 지질에서의 SNMR 신호 특성)

  • Hunter Don;Kepic Anton
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • To correctly invert and interpret Surface Nuclear Magnetic Resonance (SNMR) data collected in conductive terrains, an accurate estimate of subsurface conductivity structure is required. Given such an estimate, it would be useful to determine, before conducting an SNMR sounding, whether or not the conductivity structure would prevent groundwater being detected. Using SNMR forward modelling, we describe a method of determining the depth range from which most of the SNMR signal originates, given a model of subsurface conductivity structure. We use the method to estimate SNMR depth penetration in a range of halfspace models and show that for conductive halfspaces ($<10{\Omega}.m$) the depth of penetration Is less than 50 m. It is also shown that for these halfspaces, increasing coincident loop size does not significantly improve depth penetration. The results can be used with halfspace approximations of more complicated ID conductivity structures to give a reasonable estimate of the depth range over which signal is obtainable in conductive terrains.

Computation of the Time-domain Induced Polarization Response Based on Cole-Cole Model (Cole-Cole 모델에 대한 시간영역 유도분극 반응의 계산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.158-163
    • /
    • 2021
  • The frequency-domain induced polarization (IP) response based on Cole-Cole model is expressed as a simple equation in close form. However, it is difficult to compute the time-domain IP response based on Cole-Cole model or any other relaxation model because it cannot be written in closed form. In this study, using numerical experiments, we compared three numerical methods for calculating the time-domain IP response of the Cole-Cole model asymptotically: series expansion, digital linear filtering and Fourier transform. The series expansion method is inadequately accurate for certain time values and converges very slowly. A digital linear filter specially designed to calculate the time-domain IP response does not present the desired accuracy, especially at later times. The Fourier transform method can overcome the abovementioned problems and present the time-domain IP response with adequate accuracy for all time values, even though more computing time is required.

Extraction of Cole-Cole Parameters from Time-domain Induced Polarization Data (시간영역 유도분극 자료로부터 Cole-Cole 변수 산출)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Frequency-domain and time-domain induced polarization methods can provide spectral information about subsurface media. Analysis of spectral characteristics has been studied mainly in the frequency-domain, however, time-domain induced polarization research has recently become popular. In this study, assuming a homogeneous half-space model, an inversion method was developed to extract Cole-Cole parameters from the measured secondary potential or electrical resistivity. Since the Cole-Cole parameters of chargeability, time constant, and frequency index are not independent of each other, various problems, such as slow convergence rate, initial model problem, local minimum problem, and divergence, frequently occur when conventional nonlinear inversion is applied. In this study, we developed an effective inversion method using the initial model close to the true model by introducing a grid search method. Finally, the validity of the developed inversion method was verified using inversion experiments.

Spectral Inversion of Time-domain Induced Polarization Data (시간영역 유도분극 자료의 Cole-Cole 역산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.171-179
    • /
    • 2021
  • We outline a process for estimating Cole-Cole parameters from time-domain induced polarization (IP) data. The IP transients are all inverted to 2D Cole-Cole earth models that include resistivity, chargeability, relaxation time, and the frequency exponent. Our inversion algorithm consists of two stages. We first convert the measured voltage decay curves into time series of current-on time apparent resistivity to circumvent the negative chargeability problem. As a first step, a 4D inversion recovers the resistivity model at each time channel that increases monotonically with time. The desired intrinsic Cole-Cole parameters are then recovered by inverting the resistivity time series of each inversion block. In the second step, the Cole-Cole parameters can be estimated readily by setting the initial model close to the true value through a grid search method. Finally, through inversion procedures applied to synthetic data sets, we demonstrate that our algorithm can image the Cole-Cole earth models effectively.

Nonlinear Inversion of Time-domain Induced Polarization Data with Negative Apparent Chargeability Data (음의 겉보기 충전성 자료를 포함한 시간영역 유도분극 자료의 비선형 역산)

  • Cho, In-Ky;Kim, Yeon-Jung
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.139-148
    • /
    • 2021
  • Negative apparent chargeability data in time-domain induced polarization (IP) survey are very often considered as noise and rejected before the inversion stage. Negative IP data can, however, occur naturally as a consequence of the distribution of chargeable zones in the ground. In some cases, the negative apparent chargeability values may account for most of the data measured. Negative IP data are caused by the geometry of chargeable zones and electrode positions. Negative apparent chargeability data appear most frequently when a dipole-dipole array is used. In this study, the effect of negative apparent chargeability data on inversion results is analyzed through the numerical 2D time-domain IP modeling and nonlinear inversion. The results demonstrate clearly that negative apparent chargeability data have to be included in the inversion as they contain important information on the distribution of subsurface chargeability.

Inversion of Time-domain Induced Polarization Data by Inverse Mapping (역 사상법에 의한 시간영역 유도분극 자료의 역산)

  • Cho, In-Ky;Kim, Yeon-Jung
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.149-157
    • /
    • 2021
  • Given that induced polarization (IP) and direct current (DC) resistivity surveys are similar in terms of data acquisition, most DC resistivity systems are equipped with a time-domain IP data acquisition function. In addition, the time-domain IP data include the DC resistivity values. As such, IP and DC resistivity data are intimately linked, and the inversion of IP data is a two-step process based on DC resistivity inversions. Nevertheless, IP surveys are rarely applied, in contrast to DC resistivity surveys, as proper inversion software is unavailable. In this study, through numerical modeling and inversion experiments, we analyze the problems with the conventional inverse mapping technique used to invert time-domain IP data. Furthermore, we propose a modified inverse mapping technique that can effectively suppress inversion artifacts. The performance of the technique is confirmed through inversions applied to synthetic IP data.