• Title/Summary/Keyword: geomorphological mountain area

Search Result 39, Processing Time 0.023 seconds

A Study on Distributions and Spatial Properties of Geomorphological Mountain Area (지형학적 산지의 분포와 공간적 특성에 관한 연구)

  • Tak, Han-Myeong;Kim, Sung Hwan;Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • The mountain region in Korea has been known as 70% of total area and most Korean people have recognized Korea as the mountainous country. Those concepts are thought to be mislead by the definition of the Korea Forest Service for the mountain region. According to KFS's definition based on the land-use, the forest and farmland at the low altitude are also included in the mountain region. In this study, firstly, the geomorphological mountain region is extracted according to the definition of Kapos et al. (2000). The rates of mountain region in S. Korea, N. Korea, Korea Peninsular are 31%, 51%, 42% respectively. And the rates between mountain area and non-mountain area in the 300-1000m and 1000-2500m intervals are considerably different due to the existence of plateaus such as high-level plain surfaces. Secondly, using the overlay analysis in GIS, the distribution of mountain areas are compared with that of order-mountains' areas defined by Qui and SON (2010). Even in case of the 5th order, the highest order mountains, the hill & plain and non-mountain areas are included in that mountain area. It is possible to suggest that the definition of the KFS is completely different from the academic, realistic and epistemic definition for mountain area, and the geomorphological definition of mountain area is useful to classify the mountain area according to the its physical properties. Therefore, it would be expected that the definition contributes the development of methodologies on the scientific management of mountain area in future.

  • PDF

A Study of Morphometric Characteristics and Mountain Classification in Korean Mountainses (우리나라 산지의 형태적 특성과 산지분류에 관한 연구)

  • Tak, Han Myeong;Park, Sun-Yurp
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.63-76
    • /
    • 2017
  • This research was classified mountain areas with high ecological, environmental and resource value among the macro scaled terrain that can be checked at the space scale of less than 1:1,000,000 and analyzed the topographical characteristics. It has been confirmed that the mountains of the Korean peninsula belong to the groups IV, V, VI(classification by Kapos et al.(2000)) as a result of applying the quantitative standards for designation of mountain areas to the global mountain system. The area of mountains calculated using high resolution DEM is equivalent to 48% of the area of the Korean peninsula, and the result is quite different from the general idea of which 70% is the mountain area of the Korean peninsula. The mountain areas show the distribution of geomorphons, that is different from the plains and the hills and also, it shows the differences between the mountains of the groups IV~ VI classified according to the altitude. As a result of analyzing the relations among type pattern, slope, and relief, specific geomorphons are concentrated at $10^{\circ}$ and $20^{\circ}$ and it shows the possibility to classify the mountainous areas into two groups based on the result that the distribution of landform patterns are bimodal in the relation to the amount of relief.

Fluvial Terrace and Incision Rate in the Middle Sobaek Mountain Range (소백산맥 중부 지역의 하안단구와 하각률)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.15-30
    • /
    • 2021
  • This study tried to reveal distribution of incision rate and the factors from fluvial terrace deposits on the western and eastern slopes in the Middle Sobaek Mountain Range, using OSL age dating and topographical analysis. An average incision rate of 0.220 m/ka was estimated in the western slope streams, while the streams on the eastern slope showed a lower average incision rate of 0.121 m/ka. These results seem to indicate that the study area experienced an asymmetric uplift. Patterns of incision rate in the study area were different from those in the Northern Sobaek Mountain Range, probably suggesting that the Sobaek Mountain Range experienced spatially different uplift patterns. Among the factors, which were considered to influence on distribution of incision rate in the study area (e.g., altitude of sampling point, distance from divide, distance from axis, channel width, and bedrock type), distance from axis showed the strongest relationship with incision rate. Therefore, uplift is thought to be the most significant factor in distribution of incision rate in the Middle Sobaek Mountain Range.

A Study on the Development of Topographical Variables and Algorithm for Mountain Classification (산지 경계 추출을 위한 지형학적 변수 선정과 알고리즘 개발)

  • Choi, Jungsun;Jang, Hyo Jin;Shim, Woo Jin;An, Yoosoon;Shin, Hyeshop;Lee, Seung-Jin;Park, Soo Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.1-18
    • /
    • 2018
  • In Korea, 64% of the land is known as mountain area, but the definition and classification standard of mountain are not clear. Demand for utilization and development of mountain area is increasing. In this situation, the unclear definition and scope of the mountain area can lead to the destruction of the mountain and the increase of disasters due to indiscreet permission of forestland use conversion. Therefore, this study analyzed the variables and criteria that can extract the mountain boundaries through the questionnaire survey and the terrain analysis. We developed a mountain boundary extraction algorithm that can classify topographic mountain by using selected variables. As a result, 72.1% of the total land was analyzed as mountain area. For the three catchment areas with different mountain area ratio, we compared the results with the existing data such as forestland map and cadastral map. We confirmed the differences in boundary and distribution of mountain. In a catchment area with predominantly mountainous area, the algorithmbased mountain classification results were judged to be wider than the mountain or forest of the two maps. On the other hand, in the basin where the non-mountainous region predominated, algorithm-based results yielded a lower mountain area ratio than the other two maps. In the two maps, we was able to confirm the distribution of fragmented mountains. However, these areas were classified as non-mountain areas in algorithm-based results. We concluded that this result occurred because of the algorithm, so it is necessary to refine and elaborate the algorithm afterward. Nevertheless, this algorithm can analyze the topographic variables and the optimal value by watershed that can distinguish the mountain area. The results of this study are significant in that the mountain boundaries were extracted considering the characteristics of different mountain topography by region. This study will help establish policies for stable mountain management.

Spatial Prediction of Soil Carbon Using Terrain Analysis in a Steep Mountainous Area and the Associated Uncertainties (지형분석을 이용한 산지토양 탄소의 분포 예측과 불확실성)

  • Jeong, Gwanyong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Soil carbon(C) is an essential property for characterizing soil quality. Understanding spatial patterns of soil C is particularly limited for mountain areas. This study aims to predict the spatial pattern of soil C using terrain analysis in a steep mountainous area. Specifically, model performances and prediction uncertainties were investigated based on the number of resampling repetitions. Further, important predictors for soil C were also identified. Finally, the spatial distribution of uncertainty was analyzed. A total of 91 soil samples were collected via conditioned latin hypercube sampling and a digital soil C map was developed using support vector regression which is one of the powerful machine learning methods. Results showed that there were no distinct differences of model performances depending on the number of repetitions except for 10-fold cross validation. For soil C, elevation and surface curvature were selected as important predictors by recursive feature elimination. Soil C showed higher values in higher elevation and concave slopes. The spatial pattern of soil C might possibly reflect lateral movement of water and materials along the surface configuration of the study area. The higher values of uncertainty in higher elevation and concave slopes might be related to geomorphological characteristics of the research area and the sampling design. This study is believed to provide a better understanding of the relationship between geomorphology and soil C in the mountainous ecosystem.

Geomorphological Characteristics of the Miho Stream Flowing through a Granitic Plain, South Korea (화강암 분지를 흐르는 미호천의 지형학적 특색)

  • Kim, Young Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • The drainage area of the Miho stream is composed of granitic basins, gneissic and sedimentary mountains. 80 percent of the Miho stream flows through the Jincheon basin and the Cheongju inner-plain within the Daebo granite belt. Because the deep weathering of granitic hills provides a large amount of sands to the streams, there are wide floodplains with thick alluvium developed in the basin and plain. The thickness of the alluvium is 5~10m and the width of the floodplains is 2~2.5km. In the basin outlet area where a stream passes through the mountain canyon, wide floodplains and deep alluvium are developed in other riverside. The Miho stream is a sand-gravel channel flowing through the Cheongju inner-plain with wide floodplains and deep alluvium formed by deep weathering of granite.

A Classification of Mountains in the Southern Part of Korean Peninsula based on the Mountain Ordering (산지 차수에 근거한 남한지역의 산지 구분)

  • JIN, Qiuhong;SON, ILL
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • The technique of mountain ordering developed by Yamada(1999) has been tested to two small islands (Namhaedo: 301km2, Geojedo: 378km2). The results and experiences above were extended and applied to the whole area of the southern part of Korean Peninsula. Three areas such as Seorak-Taebaek Mountains, Jiri-Deogyu Mountains, and Youngnam Alps are identified as the highest, 5th order mountains. 10 areas are classified as the 4th order and 87 areas as the 3rd order. It is suggested that the 5th order mountains are related to the axis of uplift and the 4th and 3rd order mountains have the same direction (NE-SW) as that of the secondary mountain systems in the Korean Peninsula. The logarithmic values of number, area, and relative altitude of the ordered mountains have the linear relationship with the order, as the laws of stream order. The several mountains which are not included in the existing mountain systems could be identified among the ordered mountains, and those mountains could be used as the basis to understand the geological structure of the Korean Peninsula. Most of the National Parks and the Provincial Parks are distributed on the 3rd, 4th, 5th order mountains. It is especially confirmed that the Songnisan National Park take a role to link the Seorak-Taebaek Mountains and Jiri-Deogyu Mountains as a important ecological axis. Therefore, it would be validated that the technique of mountain ordering has the practical values as well as the geomorphological significances.

Incision Rate Distribution of Streams on the Northern Part of the Sobaek Mountain Range (소백산맥 북부 지역 하천의 하각률 분포)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • This study tried to reveal incision rate distribution of streams on the northern part of the Sobaek Mountain Range with OSL age dating and geomorphic analysis, and factors influencing on the distribution were also discussed. With results from the previous studies, a total of 10 sites from 7 streams in the study area showed the rates ranging from 0.220 m/ka to 0.297 m/ka. Namhan-gang and Geum-cheon indicated the highest and lowest rates, respectively. Both sides in the northern section in the study area showed similar rates, while the western side in the middle section and the eastern side in the southern section showed higher rates than the other sides. Higher rates were also found from the eastern and northern sides where the Range runs N-S and E-W directions, respectively. Certain relationships with altitude and distance from the divide can be recognized from the rates and may be attributed to active incision with altitude and location of the uplift axis near the present divide. The rates on granite and sedimentary rock were higher than those on metamorphic rock, indicating that bedrock type is one of the important factors influencing on stream incision. Tectonic movement seemed to play some roles in the rates, because areas with lineaments showed lower rates. This study suggests that incision rate distribution of streams on the northern part of the Sobaek Mountain Range reflects various local geomorphic and geologic conditions.

Distribution of Geomorphological Landscape Resources of Goryeong-gun, and Its Application Plan (고령군 지형경관자원의 분포와 활용방안)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.4
    • /
    • pp.279-289
    • /
    • 2008
  • The purpose of this paper is to search for geomorphological landscape resources of Goryeong-gun, to provide fundamental data for their management through mapping their distribution, and to present their conservation and application plan. The results are as follow: Firstly, geomorphological landscape resources in mountain area are Misungsan and Jusan mountain of Goryeong-up, Sangbiri valley of Deoggok-myeon, and isolated hill of Gaejin-myeon. Secondly, geomorphological landscape resources in riparian area are natural wetlands such as Jinchonneup of Bu-ri Gaejin-myeon, Hochonneup and Dalseongseupji of Hochon-ri Dasan-myeon, Bongsanneup of Bongsan-ri Ugok- myeon; artificial wetlands following the construction of weir such as riparian wetland of Oe-ri Goryeong-up and Banun-ri Gaejin-myeon; meander core and abandoned channel of Banun-ri Gaejin -myeon, river cliffs such as Naegok-ri Goryeong-up and Weolo-ri Ugok-myeon; sand bars and braided channel of Yajeong-ri Ugok-myeon. Thirdly, Jinchonneup swamp area of Bu-ri Gaejin-myeon have characteristics of typical floodplain landform, and its conservation conditions is relatively satisfactory, and its accessibility to metropolis is great, so it is a good place to construct eco-park. And construction of inquiry learning place at Banun-ri Gaejin-myeon will increase the opportunity to observe environmental changes following incised meander cutoff and ecological affirmative functions of a weir.

  • PDF

Analysis of Propagation Characteristics of a Song Sung when Weeding a Rice in Chungcheongbuk-do Using the Geomorphic Elements: The Case of Short Bang-a and Sangsa ryu (지형요소를 활용한 충북 논매기소리의 전파 특성 분석: 짧은방아 및 상사류를 사례로)

  • Park, Hyun-Su;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.61-70
    • /
    • 2016
  • This study intended to analyze the spatial distribution of two types of weeding song (Short Bang-a and Sangsa ryu) and how geomorphic elements influence the propagation of the songs in Chungcheongbuk-do area. The distribution of the two types of song was mapped as point data. According to the result, both types showed similar distribution pattern. In order to figure out the reason of this similarity, the distribution pattern of songs was analyzed at various scales based on geomorphic elements including river, mountain and lineament. The result showed that most of distribution pattern of songs followed the lineament direction. Also, the spatial continuity among mountain that was formed by large and small lineament in various directions could be the path of the cultural diffusion. If the lineament with same direction does not intersect other lineament that have different direction, spatial continuity would be blocked. Consequently it was confirmed that propagation of songs has not spread smoothly.