• Title/Summary/Keyword: geometry problem solving

Search Result 101, Processing Time 0.033 seconds

A study on the historico-genetic principle revealed in Clairaut's (Clairaut의 <기하학 원론>에 나타난 역사발생적 원리에 대한 고찰)

  • 장혜원
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.3
    • /
    • pp.351-364
    • /
    • 2003
  • by A.C. Clairaut is the first geometry textbook based on the historico-genetic principle against the logico-deduction method of Euclid's This paper aims to recognize Clairaut's historico-genetic principle by inquiring into this book and to search for its applications to school mathematics. For this purpose, we induce the following five characteristics that result from his principle and give some suggestions for school geometry in relation to these characteristics respectively : 1. The appearance of geometry is due to the necessity. 2. He approaches to the geometry through solving real-world problems.- the application of mathematics 3. He adopts natural methods for beginners.-the harmony of intuition and logic 4. He makes beginners to grasp the principles. 5. The activity principle is embodied. In addition, we analyze the two useful propositions that may prove these characteristics properly.

  • PDF

A Case Study of Geometry Teaching and Learning based on Waldorf Education Methods in a Korean Alternative School (발도르프 수학교육 방법을 적용한 우리나라 대안학교 기하단원 교수·학습에 관한 사례연구)

  • Song, Man Ho;Kim, Young-Ok
    • East Asian mathematical journal
    • /
    • v.30 no.2
    • /
    • pp.197-222
    • /
    • 2014
  • The purpose of this research is to find out if it is possible to apply the Waldorf School's mathematics education method to Korean alternative schools which are run under the national curriculum. To achieve this, the researcher conducted class on geometry for three weeks with ten 7th graders(four girls and six boys) from Apple Tree Waldorf alternative school in Busan, which has adopted Valdorf education courses. For the first two weeks, the class was about 'fundamental geometrical construction', and then it was evaluated. On the third week, the lesson was on plane figures, followed by a test with 9 plane figure questions that are based on general middle school mathematics curriculum. The result shows that most of the students understood 'fundamental geometrical construction'. When it comes to the test on 'plane figures', seven students got 8 out of 9 right, two students got 6 out of 9 right, and one of them had difficulty solving the questions. According to the results of this research, it is thought that there will be no problem for students to understand mathematical concept even if the Waldorf School's mathematics education method is applied to Korean alternative schools. Also, the Waldorf School's mathematics education method is considered to be a good teaching model for the Korean mathematics curriculum which places emphasis on 'mathematical creativity' in regard to the curriculum and contents.

A Mathematics Tutoring Model That Supports Interactive Learning of Problem Solving Based on Domain Principles (공식원리에 기반한 대화식 문제해결 학습을 지원하는 수학교수 모형)

  • Kook, Hyung-Joon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.429-440
    • /
    • 2001
  • To achieve a computer tutor framework with high learning effects as well as practicality, the goal of this research has been set to developing an intelligent tutor for problem-solving in mathematics domain. The maine feature of the CyberTutor, a computer tutor developed in this research, is the facilitation of a learning environment interacting in accordance with the learners differing inferential capabilities and needs. The pedagogical information, the driving force of such an interactive learning, comprises of tutoring strategies used commonly in various domains such as phvsics and mathematics, in which the main contents of learning is the comprehension and the application of principles. These tutoring strategies are those of testing learners hypotheses test, providing hints, and generating explanations. We illustrate the feasibility and the behavior of our propose framework with a sample problem-solving learning in geometry. The proposed tutorial framework is an advancement from previous works in several aspects. Firstly, it is more practical since it supports handing of a wide range of problem types, including not only proof types but also finding-unkown tpes. Secondly, it is aimed at facilitating a personal tutor environment by adapting to learners of varying capabilities. Finally, learning effects are maximized by its tutorial dialogues which are derived from real-time problem-solving inference instead of from built-in procedures.

  • PDF

Green's Function of Edge Crack in Transversely Isotropic Piezoelectric Material Under Anti-Plane Loads (횡등방 압전재료의 면외하중 모서리 균열에 대한 그린함수)

  • Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • Surface edge crack in transversely isotropic piezoelectric material is analyzed. The concentrated antiplane mechanical and inplane electrical loadings are applied to an arbitrary point of the surface, where the impermeable crack boundary condition is imposed. Using Mellin transform the problem is formulated, from which Wiener-Hopf equations are derived. By solving the equations the solution is obtained in a closed form. Mechanical and electric intensity factors and energy release rate are obtained and discussed. This problem could be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

Antiplane Problem of Interfacial Cracks Bonded with Transversely Isotropic Piezoelectric Media (횡등방 압전재료의 면외 계면균열문제)

  • Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.665-672
    • /
    • 2012
  • Interfacial cracks bonded with dissimilar transversely isotropic piezoelectric media that are subjected to combined anti-plane mechanical and in-plane electrical loading are analyzed. The problem is formulated using complex function theory, from which the Hilbert problem is derived. By solving the Hilbert problem, the general form solution is obtained. Using this solution, closed-form solutions for one or two finite cracks as well as a semi-infinite crack are obtained, for the problem in which one concentrated mechanical and electrical load is imposed on the crack surface. This solution could be used as a Green's function to generate solutions to other problems with the same geometry but different loading conditions.

A study on the rectangular coordinate system via comparing the interrelated influence between mathematical knowledge evolution and historical development of Cartography in Europe (서양의 역사적인 지도제작법의 발달 과정과 수학적 지식의 상호 영향 관계를 통해 본 직교좌표계)

  • Lee, Dong Won
    • Journal for History of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.37-51
    • /
    • 2012
  • By comparing the development history of rectangular coordinate system in Cartography and Mathematics, we assert in this manuscript that the rectangular coordinate system is not so much related to analytic geometry but comes from the space perceiving ability inherent in human beings. We arrived at this conclusion by the followings: First, although the Cartography have much influenced to various area of Mathematics such as trigonometry, logarithm, Geometry, Calculus, Statistics, and so on, which were developed or progressed around the advent of analytic geometry, the mathematical coordinate system itself had not been completely developed in using the origin or negative axis until 100 years and more had passed since Descartes' publication. Second, almost mathematicians who contributed to the invention of rectangular coordinate system had not focused their studying on rectangular coordinate system instead they used it freely on solving mathematical problem.

Radiative Heat Transfer in Discretely Heated Irregular Geometry with an Absorbing, Emitting, and An-isotropically Scattering Medium Using Combined Monte-Carlo and Finite Volume Method (몬테카를로/유한체적결합법에 의한 국소 가열되는 복잡한 형상에서의 흡수, 방사, 비등방산란 매질에 대한 복사열전달 해석)

  • Byun, Do-Young;Lee, Chang-Jin;Chang, Seon-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.580-586
    • /
    • 2004
  • The ray effects of finite volume method (FVM) or discrete ordinate method (DOM) are known to show a non-physical oscillation in solution of radiative heat transfer on a boundary. This wiggling behavior is caused by the finite discretization of the continuous control angle. This article proposes a combined procedure of the Monte-Carlo and finite-volume method (CMCFVM) for solving radiative heat transfer in absorbing, emitting, and an-isotropically scattering medium with an isolated boundary heat source. To tackle the problem, which is especially pronounced in a medium with an isolated heat source, the CMCFVM is suggested here and successfully applied to a two-dimensional circular geometry.

Adaptation of Motion Capture Data of Human Arms to a Humanoid Robot Using Optimization

  • Kim, Chang-Hwan;Kim, Do-Ik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2126-2131
    • /
    • 2005
  • Interactions of a humanoid with a human are important, when the humanoid is requested to provide people with human-friendly services in unknown or uncertain environment. Such interactions may require more complicated and human-like behaviors from the humanoid. In this work the arm motions of a human are discussed as the early stage of human motion imitation by a humanoid. A motion capture system is used to obtain human-friendly arm motions as references. However the captured motions may not be applied directly to the humanoid, since the differences in geometric or dynamics aspects as length, mass, degrees of freedom, and kinematics and dynamics capabilities exist between the humanoid and the human. To overcome this difficulty a method to adapt captured motions to a humanoid is developed. The geometric difference in the arm length is resolved by scaling the arm length of the humanoid with a constant. Using the scaled geometry of the humanoid the imitation of actor's arm motions is achieved by solving an inverse kinematics problem formulated using optimization. The errors between the captured trajectories of actor arms and the approximated trajectories of humanoid arms are minimized. Such dynamics capabilities of the joint motors as limits of joint position, velocity and acceleration are also imposed on the optimization problem. Two motions of one hand waiving and performing a statement in sign language are imitated by a humanoid through dynamics simulation.

  • PDF

Pin Power Distribution Determined by Analyzing the Rotational Gamma Scanning Data of HANARO Fuel Bundle

  • Lee, Jae-Yun;Park, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.452-461
    • /
    • 1998
  • The pin power distribution is determined by analyzing the rotational gamma scanning data for 36 element fuel bundle of HANARO. A fission monitor of Nb$^{95}$ is chosen by considering the criteria of the half-life, fission yield, emitting ${\gamma}$-ray energy and probability. The ${\gamma}$-ray spectra were measured in Korea Atomic Energy Research Institute(KAERI) by using a HPGe detector and by rotating the fuel bundle at steps of 10$^{\circ}$. The counting rates of Nb$^{95}$ 766 keV ${\gamma}$-rays are determined by analyzing the full absorption peak in the spectra. A 36$\times$36 response matrix is obtained from calculating the contribution of each rod at every scanning angle by assuming 2-dimensional and parallel beam approximations for the measuring geometry. In terms of the measured counting rates and the calculated response matrix, an inverse problem is set up for the unknown distribution of activity concentrations of pins. To select a suitable solving method, the performances of three direct methods and the iterative least-square method are tested by solving simulation examples. The final solution is obtained by using the iterative least-square method that shows a good stability. The influences of detection error, step size of rotation and the collimator width are discussed on the accuracy of the numerical solution. Hence an improvement in the accuracy of the solution is proposed by reducing the collimator width of the scanning arrangement.

  • PDF

Automation of Fatigue Durability Analysis for Welded Bogie Frame Using a Multi-Agent Based Engineering Framework (멀티 에이전트 기반 엔지니어링 프레임워크를 이용한 용접대차틀 피로내구해석의 자동화)

  • Bang, Je-Sung;Han, Seung-Ho;Lee, Jai-Kyung;Park, Seong-Whan;Rim, Chae-Whan;Song, See-Yeob
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.308-320
    • /
    • 2007
  • A multi-agent and web based engineering framework concerning the automation of fatigue durability analysis for welded bogie frame of railway vehicles is presented. Mostly, this kind of design or analysis includes complex workflow, huge amounts of information processing, and problem solving. Macro programs of I-DEAS, APDL of ANSYS, and in-house fatigue code are utilized for parametric geometry representation, automatic mesh generation, static stress analysis, fatigue durability analysis, post-processing, and data sorting. The engineering framework is implemented on the JADE. Since every task requires a fairly complex process and specialized knowledge, the multi-agent based framework is very useful to keep the independency among several disciplines or tasks and to use distributed hardware and software resources. All engineering programs are integrated by XML wrapper. Related database of the engineering framework and web based user interfaces are also developed. A parametric study is carried out to take into account the effect of geometrical change of transom support bracket on its cumulative fatigue damage. The developed engineering framework reduced remarkably the time and costs required in designing and solving engineering problems.