• Title/Summary/Keyword: geometry parameters

Search Result 1,117, Processing Time 0.032 seconds

Uranium Enrichment Determination Using a New Analysis Code for the U XKα Region: HyperGam-U

  • Kim, Junhyuck;Choi, Hee-Dong;Park, Jongho
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.778-784
    • /
    • 2016
  • HyperGam-U was recently developed to determine uranium enrichment based on ${\gamma}$- and X-ray spectroscopy analysis. The $XK_{\alpha}$ region of the uranium spectrum contains 13 peaks for $^{235}U$ and $^{238}U$ and is used mainly for analysis. To describe the X-ray peaks, a Lorentzian broadened shape function was used, and methods were developed to reduce the number of fitting parameters for decomposing the strongly overlapping peaks using channel-energy, energy-width, and energy-efficiency calibration functions. For validation, eight certified reference material uranium samples covering uranium enrichments from 1% to 99% were measured using a high-resolution planar high-purity germanium detector and analyzed using the HyperGam-U code. When corrections for the attenuation and true coincidence summing were performed for the detection geometry in this experiment, the goodness of fit was improved by a few percent. The enrichment bias in this study did not exceed 2% compared with the certified values for all measured samples.

Wheel-Rail Contact Analysis considering the Deformation of Wheel and Axle (차륜 및 차축의 변형을 고려한 차륜-레일 접촉해석)

  • Choi, Ha-Young;Lee, Dong-Hyong;You, Won-Hee;Lee, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.20-27
    • /
    • 2010
  • A precise evaluation of the contact position and the distribution of contact pressure in a wheel-rail interface analysis is one of the most important procedures to predict fatigue life and wear of wheel and rail. This paper presents the analysis result of finite element method(FEM) to investigate how the deformation of a wheelset, which is the assembly of wheel and axle of a railroad vehicle, affect the contact analysis of wheel and rail. 3D-FEM was used to analyze three contact models; a model with only wheel, a model with wheelset, and a model with simplified wheel and rail geometry. The analysis result of the contact position and the distribution of contact pressure are discussed. It is shown that the analysis results of a model with wheelset represent largest value with respect to contact pressure and contact stress. Furthermore, it is found that the distribution of contact pressure and the contact position is highly affected by the deformation of wheel and axle. It is concluded that the deformation of axle should be considered to evaluate the exact contact parameters in a wheel-rail contact analysis.

Improvement of Formability in the Multi-Stage Sheet Pair Hydroforming Process (박판 페어 하이드로포밍 공정의 성형성 향상을 위한 다단 성형 공정의 개발)

  • 김태정;정창균;양동열;한수식
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.702-709
    • /
    • 2003
  • In the automotive industry hydroforming of sheet metal pairs have received special attention because materials for various sheet metal components of vehicles have changed into the high strength steel, aluminum, and titanium blank having low formability. Uniform deformation over the whole region is a main advantage in the sheet hydroforming process. Because upper and lower parts could be produced simultaneously with one tool, hydroforming of sheet metal pairs is competitive in reducing the lead-time and development cost. In this paper, the multi-stage hydroforming process of sheet pair is proposed in order to increase the formability of a structural part like the oil pan shape. The upper die for forming oil pan shape is divided into two parts which can move separately. By the finite element simulation, the design parameters such as geometry of the tool and detailed specification of hydraulic pump were calculated and verified. For the strict comparison of the proposed process, the blank holding force is kept to a constant value during deformation by hydraulic valve. The deformed shape and strain distribution of the manufactured parts with the proposed process are compared with the results of simulation. In the multi-stage hydroforming process, maximum thickness strain was improved by more than 30 percent.

The Characteristics of Biodegradation for VOCs in Unsaturated Soil by Bio-filter (Bio-filter에 의한 토양중의 VOCs 분해특성)

  • Sohn Jong-Ryeul;Jang Myung-Bae;Cho Kwang-Myung
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.19-24
    • /
    • 2004
  • The objective of this study was to develop a mechanistically based mathematical model that would consider the interdependence of VOCs transport, microbial activity, and sorptive interactions in a moist, unsaturated soil. Because the focus of the model was on description of natural attenuation, the advective VOCs transport that is induced in engineered remediation processes such as vapor extraction was not considered. The utility of the model was assessed through its ability to describe experimental observations from diffusion experiments using toluene as a representative VOCs in well-defined soil columns that contained a toluene degrading bacterium, Pseudomonas putida G7 md Fl, as the sole active microbial species. The gas-liquid mass-transfer was found to be a key parameter controlling the ability of bacteria to degrade VOCs. This finding indicates that soil size and geometry are likely to be important parameters in assessing the possible success of natural attenuation of VOCs in contaminated unsaturated soils. Therefore we found that Pseudomonas putida G7 and Fl were very effective to remove of refractory pollutants such as toluene in soil by Bio-filter

A Compact CPW-fed Antenna for 2.4 GHz WLAN applications (2.4 GHz 무선랜 대역용 CPW 소형 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1245-1250
    • /
    • 2015
  • In this paper, a compact CPW-fed antenna for 2.45 GHz band WLAN applications is presented. The proposed antenna which has a geometry of folded stub and slot is fabricated into an inexpensive FR-4 substrate that has a dielectric constant of 4.2 and a thickness of 1.0 mm with optimized parameters obtained by simulation, and then measured. From measured result, we confirmed available operation as antenna for WLAN applications by obtaining the return loss level of < -10 dB in the frequency band of 2.4-2.484 GHz.

Characterization of depth filter media for gas turbine intake air cleaning

  • Park, Young Ok;Hasolli, Naim;Choi, Ho Kyung;Rhee, Young Woo
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.159-170
    • /
    • 2009
  • A depth filter medium was newly designed in order to achieve high collection of dust and low pressure drop in this work. Multilayer depth filter media consist of an upstream layer of highly porous structure which allows particles to pass through and to follow by one or more downstream layers to hold the particles inside the media. For each filter media, flat sheet and pleated module were made of newly developed depth filter media and filter media of commercial products. Commercial depth filter cartridge for gas turbine air intake cleaning were used as reference for filtration area and pleat geometry of pleated modules. This work attempts to evaluate and compare the newly developed depth filter medium and two commercial filter media in terms of filtration parameters such as air permeability, initial pressure drop, particle retention and pressure drop variation with dust loading. According to the close examination the newly developed depth filter showed better performance compared to the commercial depth filter media.

  • PDF

Iron(III) removal from aqueous solution using MCM-41 ceramic composite membrane

  • Basumatary, Ashim Kumar;Kumar, R. Vinoth;Pakshirajan, Kannan;Pugazhenthi, G.
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.495-505
    • /
    • 2016
  • Mesoporous MCM-41 was deposited on an inexpensive disk shaped ceramic support through hydrothermal technique for ultrafiltration of $Fe^{3+}$ from aqueous solution. The ceramic support was fabricated using uni-axial compaction technique followed by sintering at $950^{\circ}C$. The characteristics of MCM-41 powder as well as the composite membrane were examined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), porosity and pure water permeation test. The XRD result revealed the good crystallinity and well-resolved hexagonally arranged pore geometry of MCM-41. TGA profile of synthesized MCM-41 zeolite displayed the three different stepwise mechanisms for the removal of organic template. The formation of MCM-41 on the porous support was verified by FESEM analysis. The characterization results clearly indicated that the accumulation of MCM-41 by repeated coating on the ceramic disk directs to reduce the porosity and pore size from 47% to 23% and 1.0 to $0.173{\mu}m$, respectively. Moreover, the potential of the fabricated MCM-41 membrane was investigated by ultrafiltration of $Fe^{3+}$ from aqueous stream at various influencing parameters such as applied pressure, initial feed concentration and pH of solution. The maximum rejection 85% was obtained at applied pressure of 276 kPa and the initial feed concentration of 250 ppm at pH 2.

Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation

  • Barka, Merbouha;Benrahou, Kouider Halim;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.91-112
    • /
    • 2016
  • In this paper, post-buckling behavior of sandwich plates with functionally graded (FG) face sheets under uniform temperature rise loading is examined based on both sinusoidal shear deformation theory and stress function. It is supposed that the sandwich plate is in contact with an elastic foundation during deformation, which acts in both compression and tension. Thermo-elastic non-homogeneous properties of FG layers change smoothly by the variation of power law within the thickness, and temperature dependency of material constituents is considered in the formulation. In the present development, Von Karman nonlinearity and initial geometrical imperfection of sandwich plate are also taken into account. By employing Galerkin method, analytical solutions of thermal buckling and post-buckling equilibrium paths for simply supported plates are determined. Numerical examples presented in the present study discuss the effects of gradient index, sandwich plate geometry, geometrical imperfection, temperature dependency, and the elastic foundation parameters.

A PARAMETRIC STUDY OF CONICAL FRUSTUM GEOMETRY FOR IMPROVEMENT OF COOLING PERFORMANCE OF VORTEX TUBE (Vortex Tube 성능 개선을 위한 절두체의 형상 매개변수에 대한 연구)

  • Koo, H.B.;Park, J.Y.;Sohn, D.Y.;Choi, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2015
  • Vortex tube is a thermal static device that separates compressed air into hot and cold streams. In general, the cooling efficiency of vortex tubes is lower than that of traditional air conditioning equipment and vortex tubes are mainly used for industrial spot cooling applications because of their quick responses. In this study, conical frustums are employed in the nozzle chamber to improve the cooling performance. Conical frustums can be used to decrease the ineffective mass fraction that directly passes through the cold exit without energy separation. The shape optimization of conical frustums has been performed using full factorial design. It is found that the height of frustums has the largest main effects on the cooling performance. Computational results show that the cooling performance can be increased by about 10% within the considered range of the design parameters. This is because the ineffective mass fraction toward the cold exit is decreased by about 20%.

CFD ANALYSIS ON HEAT TRANSFER PERFORMANCE OF A REFRIGERATOR CONDENSER (냉장고 응축기의 전열성능에 대한 CFD 해석)

  • Yoo, S.S.;Hwang, D.Y.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.56-62
    • /
    • 2009
  • In this study, the heat transfer and flow field of a condenser used for a Kim-chi refrigerator is analysed with numerical method. Main objective is to present the basic data for designing a new condenser model with improvement of heat transfer performance. For CFD analysis, a commercial code, STAR CCM+ was used. The water was used for the inner working fluid and the air was used for the outer fluid. The condenser type used in this study is a flat plate fin-and-tube heat exchanger. As analysis parameters, the effect of condenser geometry and air velocity was investigated. For validation of the numerical calculations, the results were compared with the experimental ones. The heat transfer rates for both results were consistent with each other by maximum 5 % error. Based on this comparison, the numerical analysis was done with some modifications. As a result, it has been observed that there is a suitable fin pitch with which heat transfer performance of condenser is maximized.